All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36197 by prof Abdo imad last updated on 30/May/18
findthevalueof∫02πdxcos2x+3sin2x
Commented by maxmathsup by imad last updated on 14/Aug/18
letA=∫02πdxcos2x+3sin2xA=∫02πdx1+cos(2x)2+1−sin(2x)2=∫02π2dx2+cos(2x)−sin(2x)=2x=t∫04πdt2+cost−sint=∫02πdt2+cost−sint+∫2π4πdt2+cost−sintbut∫2π4πdt2+cost−sint=t=2π+α∫02πdα2+cosα−sinα⇒A=∫02π2dt2+cost−sintchangementeit=zgiveA=∫∣z∣=122+z+z−12+z−z−12idziz=∫∣z∣=14dziz(4+z+z−1−i(z−z−))=∫∣z∣=1−4idz4z+z2+1−iz2+i=∫∣z∣=1−4iz(1−i)z2+4z+1+iletconsiderthecompolexfunctionφ(z)=−4i(1−i)z2+4z+1+ipolesofφ?Δ′=4−(1−i)(1+i)=4−2=2⇒z1=−2+21−i=2(1−2)2e−iπ4=(1−2)eiπ4z2=−2−21−i=2(−1−2)2e−iπ4=(−1−2)eiπ4∣z1∣=2−1<1and∣z2∣=2+1>1(toeliminatefromresidus)⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=−4i(1−i)(z−z1)(z−z2)Res(φ,z1)=−4i(1−i)(z1−z2)=−4i(1−i)2eiπ4=−2i2=−i2⇒∫∣z∣=1φ(z)dz=2iπ(−i2)=2π2⇒A=2π2⇒A=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com