Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36197 by prof Abdo imad last updated on 30/May/18

find the value of   ∫_0 ^(2π)      (dx/(cos^2 x +3 sin^2 x))

findthevalueof02πdxcos2x+3sin2x

Commented by maxmathsup by imad last updated on 14/Aug/18

let  A = ∫_0 ^(2π)     (dx/(cos^2 x +3sin^2 x))  A = ∫_0 ^(2π)    (dx/(((1+cos(2x))/2)+((1−sin(2x))/2))) = ∫_0 ^(2π)     ((2dx)/(2  +cos(2x)−sin(2x)))  =_(2x=t)     ∫_0 ^(4π)     (dt/(2+cost −sint)) = ∫_0 ^(2π)    (dt/(2+cost −sint)) + ∫_(2π) ^(4π)     (dt/(2+cost−sint))  but ∫_(2π) ^(4π)     (dt/(2+cost −sint)) =_(t=2π +α)       ∫_0 ^(2π)    (dα/(2+cosα−sinα)) ⇒  A =  ∫_0 ^(2π)      ((2dt)/(2+cost −sint))  changement e^(it)  =z give  A = ∫_(∣z∣=1)     (2/(2 +((z+z^(−1) )/2) +((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)       ((4dz)/(iz(4 +z +z^(−1)  −i(z−z^− )))) = ∫_(∣z∣=1)     ((−4idz)/(4z +z^2  +1 −iz^2  +i))  =  ∫_(∣z∣=1)      ((−4iz)/((1−i)z^2  +4z +1+i))  let consider the compolex function  ϕ(z) = ((−4i)/((1−i)z^2  +4z +1+i))  poles of ϕ?  Δ^′  =4 −(1−i)(1+i) =4−2=2 ⇒ z_1 =((−2 +(√2))/(1−i)) =(((√2)(1−(√2)))/((√2)e^(−((iπ)/4)) )) =(1−(√2))e^((iπ)/4)   z_2 = ((−2−(√2))/(1−i)) =(((√2)(−1−(√2)))/((√2)e^(−((iπ)/4)) )) =(−1−(√2)) e^((iπ)/4)   ∣z_1 ∣ =(√2)−1<1  and  ∣z_2 ∣ =(√2)+1 >1 (to eliminate from residus) ⇒  ∫_(∣z∣=1)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  but  ϕ(z) =((−4i)/((1−i)(z−z_1 )(z−z_2 )))  Res(ϕ,z_1 ) =((−4i)/((1−i)(z_1 −z_2 ))) = ((−4i)/((1−i)2 e^(i(π/4)) )) = ((−2i)/(√2)) =((−i)/(√2)) ⇒  ∫_(∣z∣=1 )   ϕ(z)dz =2iπ(((−i)/(√2))) =((2π)/(√2)) ⇒ A = ((2π)/(√2))  ⇒ A =π(√2).

letA=02πdxcos2x+3sin2xA=02πdx1+cos(2x)2+1sin(2x)2=02π2dx2+cos(2x)sin(2x)=2x=t04πdt2+costsint=02πdt2+costsint+2π4πdt2+costsintbut2π4πdt2+costsint=t=2π+α02πdα2+cosαsinαA=02π2dt2+costsintchangementeit=zgiveA=z∣=122+z+z12+zz12idziz=z∣=14dziz(4+z+z1i(zz))=z∣=14idz4z+z2+1iz2+i=z∣=14iz(1i)z2+4z+1+iletconsiderthecompolexfunctionφ(z)=4i(1i)z2+4z+1+ipolesofφ?Δ=4(1i)(1+i)=42=2z1=2+21i=2(12)2eiπ4=(12)eiπ4z2=221i=2(12)2eiπ4=(12)eiπ4z1=21<1andz2=2+1>1(toeliminatefromresidus)z∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=4i(1i)(zz1)(zz2)Res(φ,z1)=4i(1i)(z1z2)=4i(1i)2eiπ4=2i2=i2z∣=1φ(z)dz=2iπ(i2)=2π2A=2π2A=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com