Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36203 by prof Abdo imad last updated on 30/May/18

let f(t) = ∫_0 ^∞    ((cos(tx))/((2+x^2 )^2 ))dx  1) find a simple form  of f(t)  2) calculate ∫_0 ^∞     ((cos(3x))/((2+x^2 )^2 ))dx

letf(t)=0cos(tx)(2+x2)2dx1)findasimpleformoff(t)2)calculate0cos(3x)(2+x2)2dx

Commented by prof Abdo imad last updated on 01/Jun/18

we have  2f(t) = ∫_(−∞) ^(+∞)   ((cos(tx))/((2+x^2 )^2 ))dx  =Re( ∫_(−∞) ^(+∞)    (e^(itx) /((2+x^2 )^2 ))dx) let introduce the  complex?function ϕ(z) = (e^(itz) /((2+z^2 )^2 ))  ϕ(z) = (e^(itz) /((z−i(√2))^2 (z +i(√2))^2 )) so the poles of ϕ are  i(√2)  and −i(√2) (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res( ϕ,i(√2))  Res(ϕ,i(√2)) =lim_(z→i(√2)) { (z−i(√2))^2 ϕ(z)}^′   =lim_(z→i(√2))   {  (e^(itz) /((z+i(√2))^2 ))}^′   =lim_(z→i(√2))   { ((it e^(itz) (z+i(√2))^2   −2(z+i(√2))e^(itz) )/((z +i(√2))^4 ))}  =lim_(z→i(√2))    e^(itz)  ((it(z +i(√2)) −2)/((z +i(√2))^3 ))  =e^(it(i(√2)))  ((it(2i(√2)) −2)/((2i(√2))^3 ))  = ((−2t(√2)−2)/(−8i(2(√2)))) e^(−t(√2))   =  ((t(√2) +1)/(8i(√2))) e^(−t(√2))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ  ((1+t(√2))/(8i(√2))) e^(−t(√2))   = (π/(4(√2)))(1+t(√2)) e^(−t(√2))   but we have  2f(t)= Re( ∫_(−∞) ^(+∞) ϕ(z)dz) ⇒  ★ f(t) = (π/(8(√2))) (1+t(√2))e^(−t(√2))  ★  2) we have ∫_0 ^∞    ((cos(3x))/((2+x^2 )^2 ))dx =f(3) ⇒  ∫_0 ^∞     ((cos(3x))/((2+x^2 )^2 ))dx = (π/(8(√2)))( 1+3(√2))e^(−3(√2))  .

wehave2f(t)=+cos(tx)(2+x2)2dx=Re(+eitx(2+x2)2dx)letintroducethecomplex?functionφ(z)=eitz(2+z2)2φ(z)=eitz(zi2)2(z+i2)2sothepolesofφarei2andi2(doubles)+φ(z)dz=2iπRes(φ,i2)Res(φ,i2)=limzi2{(zi2)2φ(z)}=limzi2{eitz(z+i2)2}=limzi2{iteitz(z+i2)22(z+i2)eitz(z+i2)4}=limzi2eitzit(z+i2)2(z+i2)3=eit(i2)it(2i2)2(2i2)3=2t228i(22)et2=t2+18i2et2+φ(z)dz=2iπ1+t28i2et2=π42(1+t2)et2butwehave2f(t)=Re(+φ(z)dz)f(t)=π82(1+t2)et22)wehave0cos(3x)(2+x2)2dx=f(3)0cos(3x)(2+x2)2dx=π82(1+32)e32.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com