All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36203 by prof Abdo imad last updated on 30/May/18
letf(t)=∫0∞cos(tx)(2+x2)2dx1)findasimpleformoff(t)2)calculate∫0∞cos(3x)(2+x2)2dx
Commented by prof Abdo imad last updated on 01/Jun/18
wehave2f(t)=∫−∞+∞cos(tx)(2+x2)2dx=Re(∫−∞+∞eitx(2+x2)2dx)letintroducethecomplex?functionφ(z)=eitz(2+z2)2φ(z)=eitz(z−i2)2(z+i2)2sothepolesofφarei2and−i2(doubles)∫−∞+∞φ(z)dz=2iπRes(φ,i2)Res(φ,i2)=limz→i2{(z−i2)2φ(z)}′=limz→i2{eitz(z+i2)2}′=limz→i2{iteitz(z+i2)2−2(z+i2)eitz(z+i2)4}=limz→i2eitzit(z+i2)−2(z+i2)3=eit(i2)it(2i2)−2(2i2)3=−2t2−2−8i(22)e−t2=t2+18i2e−t2∫−∞+∞φ(z)dz=2iπ1+t28i2e−t2=π42(1+t2)e−t2butwehave2f(t)=Re(∫−∞+∞φ(z)dz)⇒★f(t)=π82(1+t2)e−t2★2)wehave∫0∞cos(3x)(2+x2)2dx=f(3)⇒∫0∞cos(3x)(2+x2)2dx=π82(1+32)e−32.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com