Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36204 by prof Abdo imad last updated on 30/May/18

find the value of ∫_0 ^∞   ((x^2 −1)/(x^2  +1)) ((sin(x))/x)dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\frac{{sin}\left({x}\right)}{{x}}{dx}\: \\ $$

Commented by math khazana by abdo last updated on 17/Aug/18

let I = ∫_0 ^∞    ((x^2 −1)/(x^2  +1)) ((sinx)/x) dx  we hsve2I = ∫_(−∞) ^(+∞)  ((x^2 −1)/(x^2  +1)) ((sinx)/x)?dx  =Im( ∫_(−∞) ^(+∞)     ((x^2 −1)/(x(x^2 +1))) e^(ix) dx) let?consider the   complex function ϕ(z) = ((z^2 −1)/(z(z^2 +1))) e^(iz)   the poles of ϕ are 0,i and −i  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,0)+Res(ϕ,i)}  but ϕ(z) = (((z^2 −1)e^(iz) )/(z(z−i)(z+i))) ⇒  Res(ϕ,0) =lim_(z→0) zϕ(z) = (1/1) =1  Res(ϕ,i) = lim_(z→i) (z−i)ϕ(z) =((−2 e^(−1) )/(i(2i)))  = e^(−1)  ⇒ ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{1+e^(−1) } ⇒  2I =Im( ∫_(−∞) ^(+∞)  ϕ(z)dz) =2π{1+e^(−1) } ⇒  I  = π  +(π/e)  .

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\frac{{sinx}}{{x}}\:{dx} \\ $$$${we}\:{hsve}\mathrm{2}{I}\:=\:\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\frac{{sinx}}{{x}}?{dx} \\ $$$$={Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:{e}^{{ix}} {dx}\right)\:{let}?{consider}\:{the}\: \\ $$$${complex}\:{function}\:\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} −\mathrm{1}}{{z}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}\:{e}^{{iz}} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\mathrm{0},{i}\:{and}\:−{i} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,\mathrm{0}\right)+{Res}\left(\varphi,{i}\right)\right\} \\ $$$${but}\:\varphi\left({z}\right)\:=\:\frac{\left({z}^{\mathrm{2}} −\mathrm{1}\right){e}^{{iz}} }{{z}\left({z}−{i}\right)\left({z}+{i}\right)}\:\Rightarrow \\ $$$${Res}\left(\varphi,\mathrm{0}\right)\:={lim}_{{z}\rightarrow\mathrm{0}} {z}\varphi\left({z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}}\:=\mathrm{1} \\ $$$${Res}\left(\varphi,{i}\right)\:=\:{lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right)\:=\frac{−\mathrm{2}\:{e}^{−\mathrm{1}} }{{i}\left(\mathrm{2}{i}\right)} \\ $$$$=\:{e}^{−\mathrm{1}} \:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\mathrm{1}+{e}^{−\mathrm{1}} \right\}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:={Im}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\right)\:=\mathrm{2}\pi\left\{\mathrm{1}+{e}^{−\mathrm{1}} \right\}\:\Rightarrow \\ $$$${I}\:\:=\:\pi\:\:+\frac{\pi}{{e}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com