Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 36218 by Rio Mike last updated on 30/May/18

proof that    2((√n) − 1) < 1 + (1/((√2) )) + (1/(√3))+...+  (1/(√n)) < 2(√n)

$$\mathrm{proof}\:\mathrm{that}\: \\ $$ $$\:\mathrm{2}\left(\sqrt{{n}}\:−\:\mathrm{1}\right)\:<\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}+...+ \\ $$ $$\frac{\mathrm{1}}{\sqrt{{n}}}\:<\:\mathrm{2}\sqrt{\mathrm{n}} \\ $$

Commented byabdo mathsup 649 cc last updated on 30/May/18

the function f(x)= (1/(√x)) is decreasing on ]0,+∞[so  ∫_k ^(k+1) f(t)dt≤ f(k) ≤ ∫_(k−1) ^k f(t)dt ⇒  Σ_(k=1) ^n ∫_k ^(k+1) f(t)dt ≤ Σ_(k=1) ^n f(k) ≤ Σ_(k=1) ^n  ∫_(n−1) ^n  f(t)dt ⇒   ∫_1 ^(n+1) (dt/(√t)) ≤ 1 +(1/(√2)) +...+(1/(√n))≤  ∫_0 ^n  (dt/(√t)) ⇒  [2(√t)]_1 ^(n+1)  ≤ 1 +(1/(√2)) +....+(1/(√n))−≤ [2.(√n)]_0 ^n  ⇒  2{(√(n+1)) −1 }≤ 1 +(1/2) +...+(1/(√n)) ≤ 2(√n) but  (√n_  )  ≤.(√(n+1))  ⇒  2{(√n)−1} ≤ 1+(1/2) +....+(1/(√n)) ≤ 2(√n) .

$$\left.{the}\:{function}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{{x}}}\:{is}\:{decreasing}\:{on}\:\right]\mathrm{0},+\infty\left[{so}\right. \\ $$ $$\int_{{k}} ^{{k}+\mathrm{1}} {f}\left({t}\right){dt}\leqslant\:{f}\left({k}\right)\:\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} {f}\left({t}\right){dt}\:\Rightarrow \\ $$ $$\sum_{{k}=\mathrm{1}} ^{{n}} \int_{{k}} ^{{k}+\mathrm{1}} {f}\left({t}\right){dt}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} {f}\left({k}\right)\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\int_{{n}−\mathrm{1}} ^{{n}} \:{f}\left({t}\right){dt}\:\Rightarrow \\ $$ $$\:\int_{\mathrm{1}} ^{{n}+\mathrm{1}} \frac{{dt}}{\sqrt{{t}}}\:\leqslant\:\mathrm{1}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}}\leqslant\:\:\int_{\mathrm{0}} ^{{n}} \:\frac{{dt}}{\sqrt{{t}}}\:\Rightarrow \\ $$ $$\left[\mathrm{2}\sqrt{{t}}\right]_{\mathrm{1}} ^{{n}+\mathrm{1}} \:\leqslant\:\mathrm{1}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+....+\frac{\mathrm{1}}{\sqrt{{n}}}−\leqslant\:\left[\mathrm{2}.\sqrt{{n}}\right]_{\mathrm{0}} ^{{n}} \:\Rightarrow \\ $$ $$\mathrm{2}\left\{\sqrt{{n}+\mathrm{1}}\:−\mathrm{1}\:\right\}\leqslant\:\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}}\:\leqslant\:\mathrm{2}\sqrt{{n}}\:{but} \\ $$ $$\sqrt{{n}_{\:} }\:\:\leqslant.\sqrt{{n}+\mathrm{1}}\:\:\Rightarrow \\ $$ $$\mathrm{2}\left\{\sqrt{{n}}−\mathrm{1}\right\}\:\leqslant\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+....+\frac{\mathrm{1}}{\sqrt{{n}}}\:\leqslant\:\mathrm{2}\sqrt{{n}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com