Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 3628 by madscientist last updated on 16/Dec/15

if the fibonacci sequence is   1,1,2,3,5,8,13,21,34...  where it is 1+1=2, 2+3=5, 3+5=8,...  how can we represent this sequence   in summitation notation Σ  or product notation Π?

$${if}\:{the}\:{fibonacci}\:{sequence}\:{is}\: \\ $$$$\mathrm{1},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{8},\mathrm{13},\mathrm{21},\mathrm{34}... \\ $$$${where}\:{it}\:{is}\:\mathrm{1}+\mathrm{1}=\mathrm{2},\:\mathrm{2}+\mathrm{3}=\mathrm{5},\:\mathrm{3}+\mathrm{5}=\mathrm{8},... \\ $$$${how}\:{can}\:{we}\:{represent}\:{this}\:{sequence}\: \\ $$$${in}\:{summitation}\:{notation}\:\Sigma \\ $$$${or}\:{product}\:{notation}\:\Pi? \\ $$

Commented by 123456 last updated on 16/Dec/15

a_n =a_(n−1) +a_(n−2)   a_1 =1  a_2 =1  there also a explict form in terms of  φ=((1+(√5))/2) and Φ=((1−(√5))/2)

$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} \\ $$$${a}_{\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{there}\:\mathrm{also}\:\mathrm{a}\:\mathrm{explict}\:\mathrm{form}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of} \\ $$$$\phi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{and}\:\Phi=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 16/Dec/15

a_n =((∅^n −Φ^n )/(√5))

$${a}_{{n}} =\frac{\emptyset^{{n}} −\Phi^{{n}} }{\sqrt{\mathrm{5}}} \\ $$

Answered by Filup last updated on 17/Dec/15

Fibonacci sequence:  T_n =T_(n−1) +T_(n−2)     Find common ratio:  r=φ=(T_n /T_(n−1) )=(T_(n−1) /T_(n−2) )  ((T_(n−1) +T_(n−2) )/T_(n−1) )=(T_(n−1) /T_(n−2) )  1+(T_(n−2) /T_(n−1) )=(T_(n−1) /T_(n−2) )  ∴1+(1/φ)=φ  φ^2 −φ−1=0  φ=((1+(√5))/2)     Φ=((1−(√5))/2)    nth fibonacci number:  φ_n =((φ^n −Φ^n )/(√5))    ∴Sum=Σ_(i=1) ^n φ_i =Σ_(i=1) ^n ((φ^i −Φ^i )/(√5))

$$\mathrm{Fibonacci}\:\mathrm{sequence}: \\ $$$${T}_{{n}} ={T}_{{n}−\mathrm{1}} +{T}_{{n}−\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{common}\:\mathrm{ratio}: \\ $$$${r}=\phi=\frac{{T}_{{n}} }{{T}_{{n}−\mathrm{1}} }=\frac{{T}_{{n}−\mathrm{1}} }{{T}_{{n}−\mathrm{2}} } \\ $$$$\frac{{T}_{{n}−\mathrm{1}} +{T}_{{n}−\mathrm{2}} }{{T}_{{n}−\mathrm{1}} }=\frac{{T}_{{n}−\mathrm{1}} }{{T}_{{n}−\mathrm{2}} } \\ $$$$\mathrm{1}+\frac{{T}_{{n}−\mathrm{2}} }{{T}_{{n}−\mathrm{1}} }=\frac{{T}_{{n}−\mathrm{1}} }{{T}_{{n}−\mathrm{2}} } \\ $$$$\therefore\mathrm{1}+\frac{\mathrm{1}}{\phi}=\phi \\ $$$$\phi^{\mathrm{2}} −\phi−\mathrm{1}=\mathrm{0} \\ $$$$\phi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\:\:\:\Phi=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$ \\ $$$${n}\mathrm{th}\:\mathrm{fibonacci}\:\mathrm{number}: \\ $$$$\phi_{{n}} =\frac{\phi^{{n}} −\Phi^{{n}} }{\sqrt{\mathrm{5}}} \\ $$$$ \\ $$$$\therefore{Sum}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\phi_{{i}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\phi^{{i}} −\Phi^{{i}} }{\sqrt{\mathrm{5}}} \\ $$

Commented by Rasheed Soomro last updated on 17/Dec/15

Find common ratio:  r=φ=(T_n /T_(n−1) )=(T_(n−1) /T_(n−2) )  ?  (T_3 /T_2 )= (T_2 /T_1 )?  T_1 =T_2 =1 , T_3 =2  (2/1)=(1/1)?

$$\mathrm{Find}\:\mathrm{common}\:\mathrm{ratio}: \\ $$$${r}=\phi=\frac{{T}_{{n}} }{{T}_{{n}−\mathrm{1}} }=\frac{{T}_{{n}−\mathrm{1}} }{{T}_{{n}−\mathrm{2}} }\:\:? \\ $$$$\frac{{T}_{\mathrm{3}} }{{T}_{\mathrm{2}} }=\:\frac{{T}_{\mathrm{2}} }{{T}_{\mathrm{1}} }? \\ $$$${T}_{\mathrm{1}} ={T}_{\mathrm{2}} =\mathrm{1}\:,\:{T}_{\mathrm{3}} =\mathrm{2} \\ $$$$\frac{\mathrm{2}}{\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{1}}? \\ $$

Commented by Filup last updated on 17/Dec/15

′′ratio′′ isn′t a good word to use. Simply,  it′s the ratio that the sequence approaches  as n→∞    I belive that T_n φ≈T_(n+1)  for large n

$$''{ratio}''\:\mathrm{isn}'\mathrm{t}\:\mathrm{a}\:\mathrm{good}\:\mathrm{word}\:\mathrm{to}\:\mathrm{use}.\:\mathrm{Simply}, \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{approaches} \\ $$$$\mathrm{as}\:{n}\rightarrow\infty \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{belive}\:\mathrm{that}\:{T}_{{n}} \phi\approx{T}_{{n}+\mathrm{1}} \:\mathrm{for}\:\mathrm{large}\:{n} \\ $$

Commented by Rasheed Soomro last updated on 17/Dec/15

THαNK^S !

$$\mathcal{TH}\alpha\mathcal{NK}^{\mathcal{S}} ! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com