Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 36290 by Rio Mike last updated on 31/May/18

Find the angle between the lines     l_1 :y − x −4 = 0 and l_2 :2x − y = 7   and hence the perpendicular   distance from one point on l_1   to l_2 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\:\:\:{l}_{\mathrm{1}} :\mathrm{y}\:−\:\mathrm{x}\:−\mathrm{4}\:=\:\mathrm{0}\:\mathrm{and}\:{l}_{\mathrm{2}} :\mathrm{2}{x}\:−\:{y}\:=\:\mathrm{7}\: \\ $$$$\mathrm{and}\:\mathrm{hence}\:\mathrm{the}\:\mathrm{perpendicular}\: \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{one}\:\mathrm{point}\:\mathrm{on}\:{l}_{\mathrm{1}} \\ $$$$\mathrm{to}\:{l}_{\mathrm{2}} . \\ $$$$ \\ $$

Commented by prof Abdo imad last updated on 01/Jun/18

we have L_1  :  x−y+4=0 so u(1,1) is a vector  director of L_1   L_2 : 2x−y −7=0 so v( 1,2) is a vector director of  L_2  ⇒ (L_1 ,L_2 ) ≡ (u ,v)[2π]  cos(u,v) = ((u.v)/(∣∣u∣∣.∣∣v∣∣)) =  ((1×1 +(1×2))/((√2) (√5))) =(3/((√2)(√5)))=(3/(√(10)))  sin(u,v) =((det(u,v))/(∣∣u∣∣.∣∣v∣∣)) = ((∣_(1      2) ^(1     1) ∣)/(√(10))) = (1/(√(10))) ⇒  tan(u,v) = (1/3) ⇒ θ=(u,v) =arctan((1/3)).

$${we}\:{have}\:{L}_{\mathrm{1}} \::\:\:{x}−{y}+\mathrm{4}=\mathrm{0}\:{so}\:{u}\left(\mathrm{1},\mathrm{1}\right)\:{is}\:{a}\:{vector} \\ $$$${director}\:{of}\:{L}_{\mathrm{1}} \\ $$$${L}_{\mathrm{2}} :\:\mathrm{2}{x}−{y}\:−\mathrm{7}=\mathrm{0}\:{so}\:{v}\left(\:\mathrm{1},\mathrm{2}\right)\:{is}\:{a}\:{vector}\:{director}\:{of} \\ $$$${L}_{\mathrm{2}} \:\Rightarrow\:\left({L}_{\mathrm{1}} ,{L}_{\mathrm{2}} \right)\:\equiv\:\left({u}\:,{v}\right)\left[\mathrm{2}\pi\right] \\ $$$${cos}\left({u},{v}\right)\:=\:\frac{{u}.{v}}{\mid\mid{u}\mid\mid.\mid\mid{v}\mid\mid}\:=\:\:\frac{\mathrm{1}×\mathrm{1}\:+\left(\mathrm{1}×\mathrm{2}\right)}{\sqrt{\mathrm{2}}\:\sqrt{\mathrm{5}}}\:=\frac{\mathrm{3}}{\sqrt{\mathrm{2}}\sqrt{\mathrm{5}}}=\frac{\mathrm{3}}{\sqrt{\mathrm{10}}} \\ $$$${sin}\left({u},{v}\right)\:=\frac{{det}\left({u},{v}\right)}{\mid\mid{u}\mid\mid.\mid\mid{v}\mid\mid}\:=\:\frac{\mid_{\mathrm{1}\:\:\:\:\:\:\mathrm{2}} ^{\mathrm{1}\:\:\:\:\:\mathrm{1}} \mid}{\sqrt{\mathrm{10}}}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{10}}}\:\Rightarrow \\ $$$${tan}\left({u},{v}\right)\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:\theta=\left({u},{v}\right)\:={arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right). \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 31/May/18

y=x+4  m_1 =tanα=1  y=2x−7  m_2 =tanβ=2  let angle between two line isθ  θ=β−α  tanθ=tan(β−α)  tanθ=((tanβ−tanα)/(1+tanβ.tanα))  tanθ=((2−1)/(1+2.1))  tanθ=(1/3)  θ=tan^(−1) ((1/3))  θ=18^0 20′  acute angle  (0,4) is a point lies on st line y=x+4  perpendicular distance from(0,4) 2x−y−7=0  is=∣((2×0−4−7)/(√(2^2 +(−1)^2 )))∣  =((11)/(√5))

$${y}={x}+\mathrm{4} \\ $$$${m}_{\mathrm{1}} ={tan}\alpha=\mathrm{1} \\ $$$${y}=\mathrm{2}{x}−\mathrm{7} \\ $$$${m}_{\mathrm{2}} ={tan}\beta=\mathrm{2} \\ $$$${let}\:{angle}\:{between}\:{two}\:{line}\:{is}\theta \\ $$$$\theta=\beta−\alpha \\ $$$${tan}\theta={tan}\left(\beta−\alpha\right) \\ $$$${tan}\theta=\frac{{tan}\beta−{tan}\alpha}{\mathrm{1}+{tan}\beta.{tan}\alpha} \\ $$$${tan}\theta=\frac{\mathrm{2}−\mathrm{1}}{\mathrm{1}+\mathrm{2}.\mathrm{1}} \\ $$$${tan}\theta=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\theta={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\theta=\mathrm{18}^{\mathrm{0}} \mathrm{20}'\:\:{acute}\:{angle} \\ $$$$\left(\mathrm{0},\mathrm{4}\right)\:{is}\:{a}\:{point}\:{lies}\:{on}\:{st}\:{line}\:{y}={x}+\mathrm{4} \\ $$$${perpendicular}\:{distance}\:{from}\left(\mathrm{0},\mathrm{4}\right)\:\mathrm{2}{x}−{y}−\mathrm{7}=\mathrm{0} \\ $$$${is}=\mid\frac{\mathrm{2}×\mathrm{0}−\mathrm{4}−\mathrm{7}}{\sqrt{\mathrm{2}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} }}\mid \\ $$$$=\frac{\mathrm{11}}{\sqrt{\mathrm{5}}} \\ $$

Answered by MJS last updated on 31/May/18

l_1 : −x+y−4=0 ⇒ n_1 = (((−1)),(1) )  l_2 : 2x−y−7=0 ⇒ n_2 = ((2),((−1)) )  cos α=((∣n_1 ∗n_2 ∣)/(∣n_1 ∣×∣n_2 ∣))=((∣(−1)×2+1×(−)1∣)/((√((−1)^2 +1^2 ))×(√(2^2 +(−1)^2 ))))=  =((3(√(10)))/(10))  α≈18.43°

$${l}_{\mathrm{1}} :\:−{x}+{y}−\mathrm{4}=\mathrm{0}\:\Rightarrow\:{n}_{\mathrm{1}} =\begin{pmatrix}{−\mathrm{1}}\\{\mathrm{1}}\end{pmatrix} \\ $$$${l}_{\mathrm{2}} :\:\mathrm{2}{x}−{y}−\mathrm{7}=\mathrm{0}\:\Rightarrow\:{n}_{\mathrm{2}} =\begin{pmatrix}{\mathrm{2}}\\{−\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mid{n}_{\mathrm{1}} \ast{n}_{\mathrm{2}} \mid}{\mid{n}_{\mathrm{1}} \mid×\mid{n}_{\mathrm{2}} \mid}=\frac{\mid\left(−\mathrm{1}\right)×\mathrm{2}+\mathrm{1}×\left(−\right)\mathrm{1}\mid}{\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }×\sqrt{\mathrm{2}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} }}= \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{10}}}{\mathrm{10}} \\ $$$$\alpha\approx\mathrm{18}.\mathrm{43}° \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com