Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 363 by rajabhay last updated on 25/Jan/15

If α, β and γ are roots of the equation  x^3 +px+q=0, p≠0, q≠0 then find the  value of the determinant.   determinant ((α,β,γ),(β,γ,α),(γ,α,β))

Ifα,βandγarerootsoftheequationx3+px+q=0,p0,q0thenfindthevalueofthedeterminant.|αβγβγαγαβ|

Commented by 123456 last updated on 24/Dec/14

 determinant ((α,β,γ),(β,γ,α),(γ,α,β))=3αβγ−(α^3 +β^3 +γ^3 )  x^3 +px+q=0  α+β+γ=0  αβ+αγ+βγ=p  αβγ=−q

|αβγβγαγαβ|=3αβγ(α3+β3+γ3)x3+px+q=0α+β+γ=0αβ+αγ+βγ=pαβγ=q

Answered by prakash jain last updated on 24/Dec/14

 determinant ((α,β,γ),(β,γ,α),(γ,α,β))= determinant (((α+β+γ),β,γ),((β+γ+α),γ,α),((γ+α+β),α,β))  (C_1 =C_1 +C_2 +C_3 )  = determinant ((0,β,γ),(0,γ,α),(0,α,β))=0

|αβγβγαγαβ|=|α+β+γβγβ+γ+αγαγ+α+βαβ|(C1=C1+C2+C3)=|0βγ0γα0αβ|=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com