Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36397 by prof Abdo imad last updated on 01/Jun/18

find I  = ∫_1 ^2      (dx/(x(√(x+1))  +(x+1)(√x)))

findI=12dxxx+1+(x+1)x

Answered by behi83417@gmail.com last updated on 01/Jun/18

x=tg^2 t⇒dx=2tgt(1+tg^2 t)dt  (1/(cos^2 t))=1+x⇒cost=(1/(√(1+x)))  I=∫((2tgt(1+tg^2 t)dt)/(tg^2 t.(1/(cost))+(1/(cos^2 t)).tgt))=∫((2tgt(1+tg^2 t)dt)/((sin^2 t+sint)/(cos^3 t)))=  =∫((2sintdt)/(sin^2 t+sint))=∫((2dt)/(1+sint))=((−4)/(1+tg(t/2)))+c  tg(t/2)=(√((1−cost)/(1+cost)))=(√((1−(1/(√(1+x))))/(1+(1/(√(1+x))))))=  =(√(((√(1+x))−1)/((√(1+x))+1)))=(√((((√(1+x))−1)^2 )/x))=(((√(1+x))−1)/(√x))  ⇒I=((−4)/(1+(((√(1+x))−1)/(√x))))+c=((−4(√x))/((√x)+(√(1+x))−1))+c  I=F(2)−F(1)=(4/(√2))−((4(√2))/((√2)+(√3)−1))=  =2(√2)+4(√6)+10+2(√3)+2(√2)=2(2(√6)+(√3)+2(√2)+5).■  ((4(√2))/((√3)+(√2)−1))×(((√3)+(√2)+1)/((√3)+(√2)+1))=(((√3)+(√2)+1)/(2(2−(√6))))×((2+(√6))/(2+(√6)))×4(√2)=  =−(√2)(2(√3)+2(√2)+2+3(√2)+2(√3)+(√6))=  =−(√2)(4(√3)+5(√2)+(√6)+2)=−4(√6)−10−2(√3)−2(√2)

x=tg2tdx=2tgt(1+tg2t)dt1cos2t=1+xcost=11+xI=2tgt(1+tg2t)dttg2t.1cost+1cos2t.tgt=2tgt(1+tg2t)dtsin2t+sintcos3t==2sintdtsin2t+sint=2dt1+sint=41+tgt2+ctgt2=1cost1+cost=111+x1+11+x==1+x11+x+1=(1+x1)2x=1+x1xI=41+1+x1x+c=4xx+1+x1+cI=F(2)F(1)=42422+31==22+46+10+23+22=2(26+3+22+5).423+21×3+2+13+2+1=3+2+12(26)×2+62+6×42==2(23+22+2+32+23+6)==2(43+52+6+2)=46102322

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18

∫_1 ^2 (dx/((√x) ×(√(x+1)) ((√(x+1)) +(√x) )))  ∫_1 ^2 (((√(x+1_(  ) )) −(√x))/((√(x+1)) ×(√x)))dx  ∫_1 ^2 (dx/((√x) ))−∫_1 ^2 (dx/(√(x+1)))   =∣(((√x) )/(1/2))−(((√(x+1)) )/(1/2))∣_1 ^2   =2{((√2) −(√(2+1)))−((√1) −(√2) }  2((√2) −(√(3))) −((√1) −(√2) )}  2(−(√3)  +2(√2) −1)

12dxx×x+1(x+1+x)12x+1xx+1×xdx12dxx12dxx+1=∣x12x+11212=2{(22+1)(12}2(23)(12)}2(3+221)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com