All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36397 by prof Abdo imad last updated on 01/Jun/18
findI=∫12dxxx+1+(x+1)x
Answered by behi83417@gmail.com last updated on 01/Jun/18
x=tg2t⇒dx=2tgt(1+tg2t)dt1cos2t=1+x⇒cost=11+xI=∫2tgt(1+tg2t)dttg2t.1cost+1cos2t.tgt=∫2tgt(1+tg2t)dtsin2t+sintcos3t==∫2sintdtsin2t+sint=∫2dt1+sint=−41+tgt2+ctgt2=1−cost1+cost=1−11+x1+11+x==1+x−11+x+1=(1+x−1)2x=1+x−1x⇒I=−41+1+x−1x+c=−4xx+1+x−1+cI=F(2)−F(1)=42−422+3−1==22+46+10+23+22=2(26+3+22+5).◼423+2−1×3+2+13+2+1=3+2+12(2−6)×2+62+6×42==−2(23+22+2+32+23+6)==−2(43+52+6+2)=−46−10−23−22
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
∫12dxx×x+1(x+1+x)∫12x+1−xx+1×xdx∫12dxx−∫12dxx+1=∣x12−x+112∣12=2{(2−2+1)−(1−2}2(2−3)−(1−2)}2(−3+22−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com