Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 364 by novrya last updated on 25/Jan/15

lim_(n→∞) [((f(a+1/n))/(f(a)))]^n =....

$${li}\underset{{n}\rightarrow\infty} {{m}}\left[\frac{{f}\left({a}+\mathrm{1}/{n}\right)}{{f}\left({a}\right)}\right]^{{n}} =.... \\ $$

Answered by prakash jain last updated on 24/Dec/14

y=[((f(a+1/x))/(f(a)))]^x   ln y=x[lnf(a+(1/x))−ln f(a)]  lim_(x→∞) ln y=lim_(x→∞) (([lnf(a+(1/x))−ln f(a)])/(1/x))  Right side limit is of form 0/0. Assuming ln f(a).  lim_(x→∞) ln y=lim_(x→∞) ((((f ′(a+(1/x)))/(f(a+(1/x))))(−(1/x^2 )))/(−(1/x^2 )))  ln lim_(x→∞)  y=((f ′(a))/(f(a)))  lim_(x→∞)  y=e^((f ′(a))/(f(a)))   Note: Some assumptions are made about f(x)  to apply L′Hospital rule.

$${y}=\left[\frac{{f}\left({a}+\mathrm{1}/{x}\right)}{{f}\left({a}\right)}\right]^{{x}} \\ $$$$\mathrm{ln}\:{y}={x}\left[\mathrm{ln}{f}\left({a}+\frac{\mathrm{1}}{{x}}\right)−\mathrm{ln}\:{f}\left({a}\right)\right] \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}ln}\:{y}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left[\mathrm{ln}{f}\left({a}+\frac{\mathrm{1}}{{x}}\right)−\mathrm{ln}\:{f}\left({a}\right)\right]}{\mathrm{1}/{x}} \\ $$$$\mathrm{Right}\:\mathrm{side}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{of}\:\mathrm{form}\:\mathrm{0}/\mathrm{0}.\:\mathrm{Assuming}\:\mathrm{ln}\:{f}\left({a}\right). \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}ln}\:{y}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\frac{{f}\:'\left({a}+\frac{\mathrm{1}}{{x}}\right)}{{f}\left({a}+\frac{\mathrm{1}}{{x}}\right)}\left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\mathrm{ln}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{y}=\frac{{f}\:'\left({a}\right)}{{f}\left({a}\right)} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{y}={e}^{\frac{{f}\:'\left({a}\right)}{{f}\left({a}\right)}} \\ $$$$\mathrm{Note}:\:\mathrm{Some}\:\mathrm{assumptions}\:\mathrm{are}\:\mathrm{made}\:\mathrm{about}\:{f}\left({x}\right) \\ $$$$\mathrm{to}\:\mathrm{apply}\:\mathrm{L}'\mathrm{Hospital}\:\mathrm{rule}. \\ $$

Answered by 123456 last updated on 24/Dec/14

=lim_(n→∞) [((f(a+(1/n)))/(f(a)))]^n →1^∞   =lim_(n→∞)  exp ln [((f(a+(1/n)))/(f(a)))]^n   =exp[lim_(n→∞)  n ln((f(a+(1/n)))/(f(a)))]→∞∙0  =exp[lim_(n→∞)  ((ln ((f(a+(1/n)))/(f(a))))/(1/n))]→(0/0)  =exp[lim_(n→∞)  ((−(1/n^2 )∙((f′(a+(1/n)))/(f(a)))∙((f(a))/(f(a+(1/n)))))/(−(1/n^2 )))]  =exp[lim_(n→∞)  ((f′(a+(1/n)))/(f(a+(1/n))))]  =exp[((f′(a))/(f(a)))]  assuming f(x) is continuos and diferentiable at x=a

$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\frac{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}\right)}\right]^{{n}} \rightarrow\mathrm{1}^{\infty} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{exp}\:\mathrm{ln}\:\left[\frac{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}\right)}\right]^{{n}} \\ $$$$=\mathrm{exp}\left[\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\:\mathrm{ln}\frac{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}\right)}\right]\rightarrow\infty\centerdot\mathrm{0} \\ $$$$=\mathrm{exp}\left[\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\frac{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}\right)}}{\frac{\mathrm{1}}{{n}}}\right]\rightarrow\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$=\mathrm{exp}\left[\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\centerdot\frac{{f}'\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}\right)}\centerdot\frac{{f}\left({a}\right)}{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}}{−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }}\right] \\ $$$$=\mathrm{exp}\left[\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{f}'\left({a}+\frac{\mathrm{1}}{{n}}\right)}{{f}\left({a}+\frac{\mathrm{1}}{{n}}\right)}\right] \\ $$$$=\mathrm{exp}\left[\frac{{f}'\left({a}\right)}{{f}\left({a}\right)}\right] \\ $$$$\mathrm{assuming}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuos}\:\mathrm{and}\:\mathrm{diferentiable}\:\mathrm{at}\:{x}={a} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com