Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36406 by abdo mathsup 649 cc last updated on 01/Jun/18

find the values of  I = ∫_0 ^π cos^4 dx and  J = ∫_0 ^π  sin^4 dx .

findthevaluesofI=0πcos4dxandJ=0πsin4dx.

Commented by abdo.msup.com last updated on 05/Jun/18

we have  I +J =∫_0 ^π  (cos^4 x +sin^4 x)dx  =∫_0 ^π   {(cos^2 x +sin^2 x)^2  −2cos^2 xsin^2 x}dx  =π −2 ∫_0 ^π  (1/4)(sin(2x))^2 dx  =π −(1/2) ∫_0 ^π   ((1−cos(4x))/2)dx  =π −(π/4) + (1/(16))[sin(4x)]_0 ^π  =((3π)/4) also  I −J = ∫_0 ^π  (cos^4 x −sin^4 x)dx  = ∫_0 ^π  cos^2 x −sin^2 x dx  = ∫_0 ^π   cos(2x)dx=(1/2)[ sin(2x)]_0 ^π =0 so  I =J ⇒ 2I = ((3π)/4) ⇒ I =((3π)/8) and J =((3π)/8)

wehaveI+J=0π(cos4x+sin4x)dx=0π{(cos2x+sin2x)22cos2xsin2x}dx=π20π14(sin(2x))2dx=π120π1cos(4x)2dx=ππ4+116[sin(4x)]0π=3π4alsoIJ=0π(cos4xsin4x)dx=0πcos2xsin2xdx=0πcos(2x)dx=12[sin(2x)]0π=0soI=J2I=3π4I=3π8andJ=3π8

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18

=(1/4)∫_0 ^Π (1+cos2x)^2 dx  =(1/4)∫_0 ^Π (1+2cos2x+cos^2 2x )dx  =(1/4)∫_0 ^Π dx+(1/2)∫_0 ^Π cos2xdx+(1/8)∫_0 ^Π (1+cos4x) dx  =(1/4)∫_0 ^Π dx+(1/2)∫_0 ^Π cos2x dx+(1/8)∫_0 ^Π dx+(1/8)∫_0 ^Π cos4x  =(Π/4)+(Π/8)  =((3Π)/8)

=140Π(1+cos2x)2dx=140Π(1+2cos2x+cos22x)dx=140Πdx+120Πcos2xdx+180Π(1+cos4x)dx=140Πdx+120Πcos2xdx+180Πdx+180Πcos4x=Π4+Π8=3Π8

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18

j=∫_0 ^(Π() (((1−cos2x)/2))^2   =(1/4)∫_0 ^Π 1−2cos2x+((1+cos4x)/2)dx  =(1/4)∫_0 ^Π dx−(1/2)∫_0 ^Π cos2xdx+(1/8)∫_0 ^Π dx+(1/8)∫_0 ^Π cos4x  =(Π/4)+(Π/8)=((3Π)/8)

j=0Π((1cos2x2)2=140Π12cos2x+1+cos4x2dx=140Πdx120Πcos2xdx+180Πdx+180Πcos4x=Π4+Π8=3Π8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com