Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36412 by abdo.msup.com last updated on 01/Jun/18

calculate I_λ  =∫_0 ^λ  e^(−x) ln(1+e^x )dx

$${calculate}\:{I}_{\lambda} \:=\int_{\mathrm{0}} ^{\lambda} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{{x}} \right){dx} \\ $$

Commented by abdo.msup.com last updated on 02/Jun/18

changement  e^x =t give  I_λ  = ∫_1 ^e^λ   ((ln(1+t))/t) (dt/t)  = ∫_1 ^e^λ   (1/t^2 )ln(1+t)dt  and by parts we get  I_λ  = [−(1/t)ln(1+t)]_1 ^e^λ    +∫_1 ^e^λ    (1/(t(1+t)))dt  =ln(2) −e^(−λ) ln(1+e^λ )  + ∫_1 ^e^λ  { (1/t) −(1/(t+1))}dt  =[ln((t/(t+1)))]_1 ^e^λ   = ln( (e^λ /(e^λ  +1))) −ln((1/2))  =λ −ln(1+e^λ ) +ln(2) ⇒  I_λ  =ln(2)−e^(−λ) ln(1+e^λ ) +λ −ln(1+e^λ )  +ln(2)  I_λ  = 2ln(2) +λ −(1+e^(−λ) )ln(1+e^λ ).

$${changement}\:\:{e}^{{x}} ={t}\:{give} \\ $$$${I}_{\lambda} \:=\:\int_{\mathrm{1}} ^{{e}^{\lambda} } \:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}\:\frac{{dt}}{{t}}\:\:=\:\int_{\mathrm{1}} ^{{e}^{\lambda} } \:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{ln}\left(\mathrm{1}+{t}\right){dt} \\ $$$${and}\:{by}\:{parts}\:{we}\:{get} \\ $$$${I}_{\lambda} \:=\:\left[−\frac{\mathrm{1}}{{t}}{ln}\left(\mathrm{1}+{t}\right)\right]_{\mathrm{1}} ^{{e}^{\lambda} } \:\:+\int_{\mathrm{1}} ^{{e}^{\lambda} } \:\:\frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}\right)}{dt} \\ $$$$={ln}\left(\mathrm{2}\right)\:−{e}^{−\lambda} {ln}\left(\mathrm{1}+{e}^{\lambda} \right) \\ $$$$+\:\int_{\mathrm{1}} ^{{e}^{\lambda} } \left\{\:\frac{\mathrm{1}}{{t}}\:−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right\}{dt} \\ $$$$=\left[{ln}\left(\frac{{t}}{{t}+\mathrm{1}}\right)\right]_{\mathrm{1}} ^{{e}^{\lambda} } \:=\:{ln}\left(\:\frac{{e}^{\lambda} }{{e}^{\lambda} \:+\mathrm{1}}\right)\:−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\lambda\:−{ln}\left(\mathrm{1}+{e}^{\lambda} \right)\:+{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${I}_{\lambda} \:={ln}\left(\mathrm{2}\right)−{e}^{−\lambda} {ln}\left(\mathrm{1}+{e}^{\lambda} \right)\:+\lambda\:−{ln}\left(\mathrm{1}+{e}^{\lambda} \right) \\ $$$$+{ln}\left(\mathrm{2}\right) \\ $$$${I}_{\lambda} \:=\:\mathrm{2}{ln}\left(\mathrm{2}\right)\:+\lambda\:−\left(\mathrm{1}+{e}^{−\lambda} \right){ln}\left(\mathrm{1}+{e}^{\lambda} \right). \\ $$

Answered by sma3l2996 last updated on 02/Jun/18

u=e^(−x) ⇒du=−e^(−x) dx  I_λ =−∫_1 ^e^(−λ)  ln(1+(1/u))du  =∫_e^(−λ)  ^1 (ln(1+u)−ln(u))du  ∫ln(u)du=ulnu−∫(u/u)du+k=ulnu−u+K  ∫ln(1+u)du=(u+1)ln(1+u)−∫((u+1)/(1+u))+c  =(u+1)ln(1+u)−u+C  So   I_λ =∫_e^(−λ)  ^1 (ln(u+1)−ln(u))du  =[(u+1)ln(u+1)−uln(u)]_e^(−λ)  ^1   =(e^(−λ) +1)ln(e^(−λ) +1)+λe^(−λ) −2ln2  =(e^(−λ) +1)ln(e^λ +1)−λ−2ln2

$${u}={e}^{−{x}} \Rightarrow{du}=−{e}^{−{x}} {dx} \\ $$$${I}_{\lambda} =−\int_{\mathrm{1}} ^{{e}^{−\lambda} } {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{u}}\right){du} \\ $$$$=\int_{{e}^{−\lambda} } ^{\mathrm{1}} \left({ln}\left(\mathrm{1}+{u}\right)−{ln}\left({u}\right)\right){du} \\ $$$$\int{ln}\left({u}\right){du}={ulnu}−\int\frac{{u}}{{u}}{du}+{k}={ulnu}−{u}+{K} \\ $$$$\int{ln}\left(\mathrm{1}+{u}\right){du}=\left({u}+\mathrm{1}\right){ln}\left(\mathrm{1}+{u}\right)−\int\frac{{u}+\mathrm{1}}{\mathrm{1}+{u}}+{c} \\ $$$$=\left({u}+\mathrm{1}\right){ln}\left(\mathrm{1}+{u}\right)−{u}+{C} \\ $$$${So}\:\:\:{I}_{\lambda} =\int_{{e}^{−\lambda} } ^{\mathrm{1}} \left({ln}\left({u}+\mathrm{1}\right)−{ln}\left({u}\right)\right){du} \\ $$$$=\left[\left({u}+\mathrm{1}\right){ln}\left({u}+\mathrm{1}\right)−{uln}\left({u}\right)\right]_{{e}^{−\lambda} } ^{\mathrm{1}} \\ $$$$=\left({e}^{−\lambda} +\mathrm{1}\right){ln}\left({e}^{−\lambda} +\mathrm{1}\right)+\lambda{e}^{−\lambda} −\mathrm{2}{ln}\mathrm{2} \\ $$$$=\left({e}^{−\lambda} +\mathrm{1}\right){ln}\left({e}^{\lambda} +\mathrm{1}\right)−\lambda−\mathrm{2}{ln}\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com