All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36431 by prof Abdo imad last updated on 02/Jun/18
calculate∫01x+1(x2+1)2dx
Commented by prof Abdo imad last updated on 03/Jun/18
I=12∫012x+2(x2+1)2dx=12∫2x(x2+1)2+∫01dx(x2+1)2=[−12(x2+1)]01+∫01dx(x2+1)2changementx=tanθgive∫01dx(1+x2)2=∫0π4(1+tan2θ)(1+tan2θ)2dθ=∫0π4cos2θdθ=∫0π41+cos(2θ)2dθ=π8+14[sin(2θ)]0π4=π8+14⇒I=12−14+π8+14⇒I=π8+12.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com