All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36436 by prof Abdo imad last updated on 02/Jun/18
find∫sinx1+cos3xdx
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
=∫−dt(1+t)(1−t+t2)t=cosx=1(1+t)(1−t+t2)=a1+t+bt+c1−t+t21=a−at+at2+bt+c+bt2+ct1=a+c+t(−a+b+c)+t2(a+b)a+c=1−a+b+c=0a+b=0−a−a+1−a=0−3a=−1a=13b=−13c=1−13a=13b=−13c=23=−1∫131+tdt−∫−13t+231−t+t2dt=−13ln(1+t)+13∫t−21−t+t2dt=do+16∫2t−4t2−t+1=do+16∫2t−1t2−t+1dt−16∫3t2−t+1dt=do+16ln(t2−t+1)−36∫dtt2−2t.12+14+1−14=−13ln(1+t)+16ln(t2−t+1)−36∫dt(t−12)2+34do−12×23tan−1(t−1232)
Answered by MJS last updated on 02/Jun/18
∫sinx1+cos3xdx=[t=2arctanx→dx=2dt1+t2sinx=2t1+t2cosx=1−t21+t2]=2∫t3+t3t4+1dt=[u=t2→dt=du2t]=∫u+13u2+1du=∫u3u2+1du+∫du3u2+1=[v=3u2+1→du=6dv;w=3u→du=33dw]=16∫dvv+33∫dww2+1==16lnv+33arctanw==16ln(3u2+1)+33arctan(3u)==16ln(3t4+1)+33arctan(3t2)==16ln(48(1+arctan4x))+33arctan(43arctan2x)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com