All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36439 by prof Abdo imad last updated on 02/Jun/18
calculate∫0πsin(2x)2+cosxdx
Commented by abdo.msup.com last updated on 03/Jun/18
I=∫0π2sinxcosx2+cosxdxchangementcosx=tgive−sinxdx=dtI=∫1−1−2tdt2+t=2∫−11tt+2dt=2∫−11t+2−2t+2dt=4−4[ln∣t+2∣]−11=4−4(ln(3))I=4−4ln(3).
Answered by ajfour last updated on 02/Jun/18
letcosx=tI=∫1−1−2tdt2+t=−2∫1−1dt+4∫1−1dtt+2I=4−ln3.
Commented by MJS last updated on 02/Jun/18
minormistakeattheend:I=4−4ln3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com