Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 36442 by abdo mathsup 649 cc last updated on 02/Jun/18

let f(x)= (√(2+x^2  ))   −x  1) calculate lim_(x→+∞) f(x) and lim_(x→−∞) f(x)  2) calculate lim_(x→+∞)  ((f(x))/x) and  lim_(x→−∞)  ((f(x))/x)  3) calculate f^′ (x) and determine its sign  4) give the variation of  5) give the equation of assymptote at  point  A(1,f(1))  6) find f^(−1) (x) and calculate (f^(−1) )^′ (x)  7) calculate  ∫_0 ^4 f(x)dx .

letf(x)=2+x2x1)calculatelimx+f(x)andlimxf(x)2)calculatelimx+f(x)xandlimxf(x)x3)calculatef(x)anddetermineitssign4)givethevariationof5)givetheequationofassymptoteatpointA(1,f(1))6)findf1(x)andcalculate(f1)(x)7)calculate04f(x)dx.

Commented by abdo.msup.com last updated on 05/Jun/18

1) lim_(x→+∞) f(x)=lim_(x→+∞)  (2/((√(2+x^2 )) +x))  =0 and lim_(x→−∞) f(x)=+∞  2) lim_(x→+∞)  ((f(x))/x) =lim(((√(2+x^2 )) −x)/x)  =lim_(x→+∞)  (√((2/x^2 ) +1))  −1  =0  lim_(x→−∞)  ((f(x))/x) =lim_(x→−∞)  (((√(2+x^2  )) −x)/x)  =lim_(x→−∞)   −(√((2/x^2 ) +1))  −1 =−2  3)we have f(x)=(√(2+x^2 ))  −x ⇒  f^′ (x) = ((2x)/(2(√(2+x^2 )))) −1 = (x/(√(2+x^2 ))) −1  =((x−(√(2+x^2 )))/(√(2+x^2 )))  if x≤0  f^′ (x)≤0   if x≥0  we have x^2  −((√(2+x^2 )))^2 ≤ 0 ⇒  f^′ (x)≤0  4) f is decreasing on R .

1)limx+f(x)=limx+22+x2+x=0andlimxf(x)=+2)limx+f(x)x=lim2+x2xx=limx+2x2+11=0limxf(x)x=limx2+x2xx=limx2x2+11=23)wehavef(x)=2+x2xf(x)=2x22+x21=x2+x21=x2+x22+x2ifx0f(x)0ifx0wehavex2(2+x2)20f(x)04)fisdecreasingonR.

Commented by abdo.msup.com last updated on 05/Jun/18

5) we have  f(x)=(√(2+x^2 )) −x ⇒  f(1)=(√3) −1 also f^′ (x)= (x/(√(2+x^2 ))) −1 ⇒  f^′ (1) = (1/(√3)) −1 so the equstion of   assymptote is  y =f^′ (1)(x−1) +f(1)⇒  y =((1/(√3)) −1)(x−1) +(√3) −1 .

5)wehavef(x)=2+x2xf(1)=31alsof(x)=x2+x21f(1)=131sotheequstionofassymptoteisy=f(1)(x1)+f(1)y=(131)(x1)+31.

Commented by abdo.msup.com last updated on 05/Jun/18

6) f is decreasing so f]−∞,+∞[  =]f(+∞),f(−∞)[=]0,+∞[ f is  a bijection from R to ]0,+∞[  let f(x)=y ⇔ (√(2+x^2 )) −x =y ⇒  (√(2+x^2 )) =x +y  ( so x+y>0)⇒  2+x^2  =x^2  +2xy +y^2  ⇒  2=2xy +y^2  ⇒ 2−y^2  =2xy ⇒x=((2−y^2 )/(2y))  ⇒ f^(−1) (x) = ((2−x^2 )/(2x))  and x>0

6)fisdecreasingsof],+[=]f(+),f()[=]0,+[fisabijectionfromRto]0,+[letf(x)=y2+x2x=y2+x2=x+y(sox+y>0)2+x2=x2+2xy+y22=2xy+y22y2=2xyx=2y22yf1(x)=2x22xandx>0

Commented by abdo.msup.com last updated on 05/Jun/18

we have f^(−1) (x)= (1/x) −(x/2) ⇒  (f^(−1) (x))^′  = −(1/x^2 ) −(1/2) .

wehavef1(x)=1xx2(f1(x))=1x212.

Commented by abdo.msup.com last updated on 05/Jun/18

7) let A= ∫_0 ^4  f(x)dx  A  = ∫_0 ^4  ((√(2+x^2 )) −x)dx  =∫_0 ^4  (√(2+x^2 )) dx  −[(x^2 /2)]_0 ^4   =∫_0 ^4 (√(2+x^2  ))dx −8  but chang.x=(√2) sh(t)  give  ∫_0 ^4  (√(2+x^2 ))dx=(√2) ∫_0 ^(argsh((4/(√2))))  ch(t)(√2)chtdt  = 2 ∫_0 ^(argsh((4/(√2))))  ch^2 (t)dt =2 ∫_0 ^(argsh((4/(√2)))) ((1+ch(2t))/2)dt  =argsh((4/(√2)))  +(1/2)[sh(2t)]_0 ^(argsh((4/(√2))))   =ln( (4/(√2)) +3) +(1/2)sh(2 ln{(4/(√2)) +3)})  =ln((4/(√2)) +3) +(1/4){ ((4/(√2)) +3)^2  +((4/(√2)) +3)^(−1) } .

7)letA=04f(x)dxA=04(2+x2x)dx=042+x2dx[x22]04=042+x2dx8butchang.x=2sh(t)give042+x2dx=20argsh(42)ch(t)2chtdt=20argsh(42)ch2(t)dt=20argsh(42)1+ch(2t)2dt=argsh(42)+12[sh(2t)]0argsh(42)=ln(42+3)+12sh(2ln{42+3)})=ln(42+3)+14{(42+3)2+(42+3)1}.

Commented by abdo.msup.com last updated on 05/Jun/18

I =ln(4+3(√2)) −(1/2)ln(2)  +(1/4){ ((4/(√2)) +3)^2  −((4/(√2)) +3)^(−2) } −8 .

I=ln(4+32)12ln(2)+14{(42+3)2(42+3)2}8.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com