All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36491 by rahul 19 last updated on 02/Jun/18
Answered by MJS last updated on 08/Jun/18
justdifferentiatethefollowingterm:±1(secx+tanx)112(111±17(secx+tanx)2)write∓forchangingsigns.it′sfasterthandifferentiating4terms,decideattheendwhichcombinationofsignsistherightone.ddx[±1(secx+tanx)112(111±17(secx+tanx)2)]==±ddx[7±11(secx+tanx)277(secx+tanx)112]=[Iwriteufor(secx+tanx)]=±ddx[7±11u277u112]=±±22uu′×77u112−(7±11u2)×8472u92u′5929u11==±±1694u132−59292u92∓93172u1325929u11u′==±∓59292u132−59292u925929u11u′==±∓u2−12u132u′=[u′=secx(secx+tanx)=usecx]=±∓u2−12u112secx=(secx+tanx)2∓12(secx+tanx)113secx
Commented by rahul 19 last updated on 03/Jun/18
Sir,plssolveit!
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
t2=secx+tanx2tdt=(secxtanx+sec2x)dx2tdt=secx(secx+tanx)dx2tdt=(secx.t2)dxsecxdx=(2dtt)(secx+tanx)(secx−tanx)=1secx−tanx=1t2secx+tanx=t2secx−tanx=1t2secx=12(t2+1t2)tanx=12(t2−1t2)∫sec2xdx(secx+tanx)92∫secx.secxdx(secx+tanx)92=12∫(t2+1t2)×2dttt9=∫t2+1t2t10dt=∫t−8+t−12dt=−17×t7+−111t11+c=−17×1(secx+tanx)72+−111×1(secx+tanx)112soOptionCrightanswer
Terms of Service
Privacy Policy
Contact: info@tinkutara.com