Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36491 by rahul 19 last updated on 02/Jun/18

Answered by MJS last updated on 08/Jun/18

just differentiate the following term:  ±(1/((sec x +tan x)^((11)/2) ))((1/(11))±(1/7)(sec x +tan x)^2 )  write ∓ for changing signs. it′s faster  than differentiating 4 terms, decide at the  end which combination of signs is the right  one.    (d/dx)[±(1/((sec x +tan x)^((11)/2) ))((1/(11))±(1/7)(sec x +tan x)^2 )]=  =±(d/dx)[((7±11(sec x+tan x)^2 )/(77(sec x+tan x)^((11)/2) ))]=            [I write u for (sec x+tan x)]  =±(d/dx)[((7±11u^2 )/(77u^((11)/2) ))]=±((±22uu′×77u^((11)/2) −(7±11u^2 )×((847)/2)u^(9/2) u′)/(5929u^(11) ))=  =±((±1694u^((13)/2) −((5929)/2)u^(9/2) ∓((9317)/2)u^((13)/2) )/(5929u^(11) ))u′=  =±((∓((5929)/2)u^((13)/2) −((5929)/2)u^(9/2) )/(5929u^(11) ))u′=  =±((∓u^2 −1)/(2u^((13)/2) ))u′=            [u′=sec x (sec x+tan x)=usec x]  =±((∓u^2 −1)/(2u^((11)/2) ))sec x=(((sec x+tan x)^2 ∓1)/(2(sec x+tan x)^((11)/3) ))sec x

justdifferentiatethefollowingterm:±1(secx+tanx)112(111±17(secx+tanx)2)writeforchangingsigns.itsfasterthandifferentiating4terms,decideattheendwhichcombinationofsignsistherightone.ddx[±1(secx+tanx)112(111±17(secx+tanx)2)]==±ddx[7±11(secx+tanx)277(secx+tanx)112]=[Iwriteufor(secx+tanx)]=±ddx[7±11u277u112]=±±22uu×77u112(7±11u2)×8472u92u5929u11==±±1694u13259292u9293172u1325929u11u==±59292u13259292u925929u11u==±u212u132u=[u=secx(secx+tanx)=usecx]=±u212u112secx=(secx+tanx)212(secx+tanx)113secx

Commented by rahul 19 last updated on 03/Jun/18

Sir, pls solve it !

Sir,plssolveit!

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

t^2 =secx+tanx  2tdt=(secxtanx+sec^2 x )dx  2tdt=secx(secx+tanx) dx  2tdt=(secx.t^2  )dx  secx dx=(((2dt)/t) )  (secx+tanx)(secx−tanx)=1  secx−tanx=(1/t^2 )  secx+tanx=t^2   secx−tanx=(1/t^2 )  secx=(1/2)(t^2 +(1/t^2 ))  tanx=(1/2)(t^2 −(1/t^2 ))  ∫((sec^2 xdx)/((secx+tanx)^(9/2) ))  ∫((secx.secxdx)/((secx+tanx)^(9/2) ))  =(1/2)∫(((t^2 +(1/t^2 ))×((2dt)/t))/t^9 )  =∫((t^2 +(1/t^2 ))/t^(10) )dt  =∫t^(−8) +t^(−12)  dt  =((−1)/(7×t^7 ))+((−1)/(11t^(11) ))+c  =((−1)/7)×(1/((secx+tanx)^(7/2) ))+((−1)/(11))×(1/((secx+tanx)^((11)/2) ))  so Option C right answer

t2=secx+tanx2tdt=(secxtanx+sec2x)dx2tdt=secx(secx+tanx)dx2tdt=(secx.t2)dxsecxdx=(2dtt)(secx+tanx)(secxtanx)=1secxtanx=1t2secx+tanx=t2secxtanx=1t2secx=12(t2+1t2)tanx=12(t21t2)sec2xdx(secx+tanx)92secx.secxdx(secx+tanx)92=12(t2+1t2)×2dttt9=t2+1t2t10dt=t8+t12dt=17×t7+111t11+c=17×1(secx+tanx)72+111×1(secx+tanx)112soOptionCrightanswer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com