Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 3650 by prakash jain last updated on 18/Dec/15

If a_n  is sum of the all primitive n^(th)  root of  unity.  Does Σ_(n=1) ^∞ a_n  converge?  An n^(th)  root of unity, say z, is primitive if it is not  k^(th)  root of unity where k<n.  or z^n =1 and z^k ≠1 (k=1,2,3,..,n−1)  a_1 =1  a_2 =−1  (2^(nd)  root of unity are 1 and −1, 1 is not                primitive)

Ifanissumoftheallprimitiventhrootof unity. Doesn=1anconverge? Annthrootofunity,sayz,isprimitiveifitisnot kthrootofunitywherek<n. orzn=1andzk1(k=1,2,3,..,n1) a1=1 a2=1(2ndrootofunityare1and1,1isnot primitive)

Answered by Yozzii last updated on 18/Dec/15

Let p(n) be the primitive roots of the  equation z^n =1 and a_n =Σp(n).  n=1⇒z=1⇒p(1)=1⇒a_1 =1.  n=2⇒z^2 =1⇒z=±1⇒p(2)=−1⇒a_2 =−1.  n=3⇒z^3 =1=e^(2πir)  (−1≤r≤1)   ⇒z=e^((2πir)/3) ⇒p(3)=e^(±((2πi)/3)) ⇒a_3 =2cos((2π)/3)=−1  n=4⇒z^4 =1⇒z=±1,±i⇒p(4)=±i⇒a_4 =0  n=5⇒z^5 =e^(2πir)  (−2≤r≤2)  ⇒z=e^((2πir)/5) =1,e^(±((2πi)/5)) ,e^(±((4πi)/5)) ⇒p(5)=e^(±((2πi)/5)) ,e^(±((4πi)/5))   ⇒a_5 =2(cos((2π)/5)+cos((4π)/5))  a_5 =2{2cos(((4π+2π)/5)/2)cos(((4π−2π)/5)/2)}  a_5 =4cos((3π)/5)cos(π/5)=−1  n=6⇒z^6 =e^(2πir)  (−2≤r≤3)  z=e^((πir)/3) ⇒z=±1,e^(±((πi)/3)) ,e^(±((2πi)/3)) ⇒p(6)=e^(±((πi)/3))   ⇒a_6 =2cos(π/3)=1  n=7⇒z^7 =e^(2πir)  (−3≤r≤3)  ⇒z=e^((2πir)/7) ⇒z=1,e^((±2πi)/7) ,e^((±4πi)/7) ,e^((±6πi)/7)   ⇒a_7 =2(cos((2π)/7)+cos((4π)/7)+cos((6π)/7))=−1  n=8⇒z^8 =e^(2πir) ⇒z=e^((πir)/4) (−3≤r≤4)  ⇒z=±1,e^(±((3πi)/4)) ,±i,e^(±((πi)/4))   ⇒a_8 =2(cos((3π)/4)+cos(π/4))=0.  n=9⇒z=e^((2πir)/9)  (−4≤r≤4)  ⇒z=1,e^(±((2πi)/9)) ,e^(±((4πi)/9)) ,e^(±((2πi)/3)) ,e^(±((8πi)/9))   ⇒a_9 =2(cos((2π)/9)+cos((4π)/9)+cos((8π)/9))=0  n=10⇒z=e^((πir)/5)  (−4≤r≤5)  ⇒z=±1,e^(±((πi)/5)) ,e^(±((2πi)/5)) ,e^(±((3πi)/5)) ,e^(±((4πi)/5))   ⇒a_(10) =2(cos(π/5)+cos((3π)/5))=1    I conject that for n being prime,  a_n ≠0, so that lim_((n∈P)→∞) a_n ≠0⇒Σa_n  does  not converge.     Suppose that n∈P−{2} and z^n =e^(2πir)  with  r=0,1,2,...,n−1. Then, z=e^((2πir)/n) .  n∈P−{2}⇒ (r/n) never reduces nor vanishes  for all r≠0. If r=0 we obtain the non−primitive  root z=1. Otherwise, all arguments   ((2πr)/n) are unique. In adding all of the  primitive roots however, the imaginary  parts vanish for there are an even   number of roots (n−1 ∵ n∈O^+ ) and half of these  roots are complex conjugates of the remaining  roots.  ∴ a_n =2Σ_(r=1) ^((n−1)/2) cos((2πr)/n) (n∈P−{2})  ⇒lim_((n∈P−{2})→∞) a_n ≠0  If n=2, a_2 =−1≠0. So lim_((n∈P)→∞) a_n ≠0.  There exist infinitely many primes   with P⊂N, so a_n  always exists for  n∈P⊂N.  Calculations project that a_n =−1  for all n∈P. It has been proven that  a_n =−1 ∀n∈P indeed in the comments   below.

Letp(n)betheprimitiverootsofthe equationzn=1andan=Σp(n). n=1z=1p(1)=1a1=1. n=2z2=1z=±1p(2)=1a2=1. n=3z3=1=e2πir(1r1) z=e2πir3p(3)=e±2πi3a3=2cos2π3=1 n=4z4=1z=±1,±ip(4)=±ia4=0 n=5z5=e2πir(2r2) z=e2πir5=1,e±2πi5,e±4πi5p(5)=e±2πi5,e±4πi5 a5=2(cos2π5+cos4π5) a5=2{2cos4π+2π52cos4π2π52} a5=4cos3π5cosπ5=1 n=6z6=e2πir(2r3) z=eπir3z=±1,e±πi3,e±2πi3p(6)=e±πi3 a6=2cosπ3=1 n=7z7=e2πir(3r3) z=e2πir7z=1,e±2πi7,e±4πi7,e±6πi7 a7=2(cos2π7+cos4π7+cos6π7)=1 n=8z8=e2πirz=eπir4(3r4) z=±1,e±3πi4,±i,e±πi4 a8=2(cos3π4+cosπ4)=0. n=9z=e2πir9(4r4) z=1,e±2πi9,e±4πi9,e±2πi3,e±8πi9 a9=2(cos2π9+cos4π9+cos8π9)=0 n=10z=eπir5(4r5) z=±1,e±πi5,e±2πi5,e±3πi5,e±4πi5 a10=2(cosπ5+cos3π5)=1 Iconjectthatfornbeingprime, an0,sothatlim(nP)an0Σandoes notconverge. SupposethatnP{2}andzn=e2πirwith r=0,1,2,...,n1.Then,z=e2πirn. nP{2}rnneverreducesnorvanishes forallr0.Ifr=0weobtainthenonprimitive rootz=1.Otherwise,allarguments 2πrnareunique.Inaddingallofthe primitiverootshowever,theimaginary partsvanishforthereareaneven numberofroots(n1nO+)andhalfofthese rootsarecomplexconjugatesoftheremaining roots. an=2n12r=1cos2πrn(nP{2}) lim(nP{2})an0 Ifn=2,a2=10.Solim(nP)an0. Thereexistinfinitelymanyprimes withPN,soanalwaysexistsfor nPN. Calculationsprojectthatan=1 forallnP.Ithasbeenproventhat an=1nPindeedinthecomments below.

Commented byprakash jain last updated on 18/Dec/15

Thanks for detailed answer.

Thanksfordetailedanswer.

Commented byYozzii last updated on 18/Dec/15

S(n)=Σ_(r=1) ^n cosrθ     S(n)sin0.5θ=Σ_(r=1) ^n cosrθsin0.5θ   (θ≠2nπ)    2cosrθsin0.5θ=sin(r+0.5)θ−sin(r−0.5)θ  ∴S(n)sin0.5θ=(1/2){sin1.5θ−sin0.5θ  +sin2.5θ−sin1.5θ+sin3.5θ−sin2.5θ  +...+sin(n−2.5)θ−sin(n−3.5)θ  +sin(n−1.5)θ−sin(n−2.5)θ  +sin(n−0.5)θ−sin(n−1.5)θ  +sin(n+0.5)θ−sin(n−0.5)θ}  S(n)=((sin(n+0.5)θ−sin0.5θ)/(2sin0.5θ))  S(n)=((2cos(((n+0.5)θ+0.5θ)/2)sin(((n+0.5)θ−0.5θ)/2))/(2sin0.5θ))  S(n)=((cos((n+1)/2)θsin((nθ)/2))/(sin0.5θ))  n∈P−{2}⇒ ((n−1)/2)∈Z^+   so ((n−1)/2) can be safely substituted for n in S(n).    ∴ S(((n−1)/2))=((cos(((n/2)−(1/2)+1)/2)θsin((n−1)/4)θ)/(sin0.5θ))  S(((n−1)/2))=((cos((n+1)/4)θsin((n−1)/4)θ)/(2cos(θ/4)sin(θ/4)))    Now let θ=((2π)/n).  S(0.5(n−1))=((cos((n+1)/(2n))πsin((n−1)/(2n))π)/(2cos(π/(2n))sin(π/(2n))))  S((1/2)(n−1))=((cos((π/2)+(π/(2n)))sin((π/2)−(π/(2n))))/(2cos(π/(2n))sin(π/(2n))))  cos(0.5π+α)=0−sin0.5πsinα  and sin(0.5π−α)=cosα  ⇒S((1/2)(n−1))=−0.5  ⇒a_n =2×(−0.5)=−1 ∀n∈P−{2}.                  o

S(n)=nr=1cosrθ S(n)sin0.5θ=nr=1cosrθsin0.5θ(θ2nπ) 2cosrθsin0.5θ=sin(r+0.5)θsin(r0.5)θ S(n)sin0.5θ=12{sin1.5θsin0.5θ +sin2.5θsin1.5θ+sin3.5θsin2.5θ +...+sin(n2.5)θsin(n3.5)θ +sin(n1.5)θsin(n2.5)θ +sin(n0.5)θsin(n1.5)θ +sin(n+0.5)θsin(n0.5)θ} S(n)=sin(n+0.5)θsin0.5θ2sin0.5θ S(n)=2cos(n+0.5)θ+0.5θ2sin(n+0.5)θ0.5θ22sin0.5θ S(n)=cosn+12θsinnθ2sin0.5θ nP{2}n12Z+ son12canbesafelysubstitutedforninS(n). S(n12)=cosn212+12θsinn14θsin0.5θ S(n12)=cosn+14θsinn14θ2cosθ4sinθ4 Nowletθ=2πn. S(0.5(n1))=cosn+12nπsinn12nπ2cosπ2nsinπ2n S(12(n1))=cos(π2+π2n)sin(π2π2n)2cosπ2nsinπ2n cos(0.5π+α)=0sin0.5πsinα andsin(0.5πα)=cosα S(12(n1))=0.5 an=2×(0.5)=1nP{2}. o

Commented byprakash jain last updated on 18/Dec/15

p>2 prime−(so odd)  x^p −1=0  1+x+x^2 +..+x^(p−1) =0 (1)  All roots of (1) are primitive  (x−r_1 )(x−r_2 )(x−r_3 )...(x−r_(p−1) )=0  x^(p−1) −(r_1 +r_2 +..+r_(p−1) )x^(p−2) +....+(−1)^(p−1) Π_(i=1) ^(p−1) r_i  =0  so  r_1 +r_2 +..+r_(p−1) =−1  Same as what you stated that sum of primitive  roots =−1 for n∈P.

p>2prime(soodd) xp1=0 1+x+x2+..+xp1=0(1) Allrootsof(1)areprimitive (xr1)(xr2)(xr3)...(xrp1)=0 xp1(r1+r2+..+rp1)xp2+....+(1)p1p1i=1ri=0 so r1+r2+..+rp1=1 Sameaswhatyoustatedthatsumofprimitive roots=1fornP.

Commented byYozzii last updated on 18/Dec/15

Ahh. Nicely .

Ahh.Nicely.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com