All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36541 by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
∫(x+1+x2)ndx
Commented by prof Abdo imad last updated on 03/Jun/18
letputAn=∫(x+1+x2)ndxchangementx=sh(t)giveAn=∫(sht+cht)nchdt=∫{et−e−t+et+e−t2}nchtdt=∫ent(et+e−t2)dt=12∫e(n+1)tdt+12∫e(n−1)tdt=12(n+1)e(n+1)t+12(n+1)e(n−1)t+cbute(n+1)t=e(n+1)ln(x+1+x2)=(x+1+x2)n+1andby?thasamee(n−1)t=(x+1+x2)n−1⇒An=12(n+1){x+1+x2)n+1+12(n−1){x+1+x2)n−1+cifn≠1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com