Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36541 by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

∫(x+(√(1+x^2 )) )^n dx

(x+1+x2)ndx

Commented by prof Abdo imad last updated on 03/Jun/18

let put  A_n = ∫ (x +(√(1+x^2 )) )^n  dx changement  x =sh(t) give   A_n = ∫ (sht  +cht)^n  ch dt  =∫ { ((e^t  −e^(−t)  + e^t  +e^(−t) )/2)}^n  cht dt  =∫  e^(nt)  ( ((e^t  +e^(−t) )/2))dt  =(1/2)∫  e^((n+1)t) dt   +(1/2)∫  e^((n−1)t) dt  = (1/(2(n+1)))e^((n+1)t)    +(1/(2(n+1)))e^((n−1)t)   +c  but e^((n+1)t)  =e^((n+1)ln(x+(√(1+x^2 ))))   =(x +(√(1+x^2 )))^(n+1)  and by?tha same  e^((n−1)t)  = (x+(√(1+x^2 )))^(n−1)   ⇒  A_n   = (1/(2(n+1))){ x+(√(1+x^2 )))^(n+1)   + (1/(2(n−1))){ x +(√(1+x^2 )))^(n−1)   +c    if n≠1

letputAn=(x+1+x2)ndxchangementx=sh(t)giveAn=(sht+cht)nchdt={etet+et+et2}nchtdt=ent(et+et2)dt=12e(n+1)tdt+12e(n1)tdt=12(n+1)e(n+1)t+12(n+1)e(n1)t+cbute(n+1)t=e(n+1)ln(x+1+x2)=(x+1+x2)n+1andby?thasamee(n1)t=(x+1+x2)n1An=12(n+1){x+1+x2)n+1+12(n1){x+1+x2)n1+cifn1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com