Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123494 by bemath last updated on 25/Nov/20

 ∫ ((x−1)/((x+1) (√(x^3 +x^2 +x)))) dx ?

$$\:\int\:\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\:\sqrt{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}}}\:{dx}\:? \\ $$

Answered by bramlexs22 last updated on 26/Nov/20

 I(x)=∫ ((x^2 −1)/((x+1)^2 (√(x^3 +x^2 +x)))) dx  I(x)=∫((x^2 −1)/( (x^2 +2x+1)(√(x^2 (x+1+(1/x)))))) dx  I(x)=∫((1−(1/x^2 ))/((x+2+(1/x)) (√(x+1+(1/x))))) dx  let z = x+1+(1/x) ⇒dz=1−(1/x^2 ) dx  I(x)= ∫(dz/((z+1)(√z)))   let (√z) = u ⇒z = u^2   I(x)= ∫ ((2u du)/((u^2 +1)u)) = ∫(2/(u^2 +1)) du  I(x)= 2tan^(−1) (u)+c   I(x)=2tan^(−1) ((√z) )+c  I(x)=2tan^(−1) ((√(x+1+(1/x)))) + c

$$\:{I}\left({x}\right)=\int\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}}}\:{dx} \\ $$$${I}\left({x}\right)=\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\:\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \left({x}+\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)}}\:{dx} \\ $$$${I}\left({x}\right)=\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\left({x}+\mathrm{2}+\frac{\mathrm{1}}{{x}}\right)\:\sqrt{{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}}}}\:{dx} \\ $$$${let}\:{z}\:=\:{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}}\:\Rightarrow{dz}=\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{dx} \\ $$$${I}\left({x}\right)=\:\int\frac{{dz}}{\left({z}+\mathrm{1}\right)\sqrt{{z}}}\: \\ $$$${let}\:\sqrt{{z}}\:=\:{u}\:\Rightarrow{z}\:=\:{u}^{\mathrm{2}} \\ $$$${I}\left({x}\right)=\:\int\:\frac{\mathrm{2}{u}\:{du}}{\left({u}^{\mathrm{2}} +\mathrm{1}\right){u}}\:=\:\int\frac{\mathrm{2}}{{u}^{\mathrm{2}} +\mathrm{1}}\:{du} \\ $$$${I}\left({x}\right)=\:\mathrm{2tan}^{−\mathrm{1}} \left({u}\right)+{c}\: \\ $$$${I}\left({x}\right)=\mathrm{2tan}^{−\mathrm{1}} \left(\sqrt{{z}}\:\right)+{c} \\ $$$${I}\left({x}\right)=\mathrm{2tan}^{−\mathrm{1}} \left(\sqrt{{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}}}\right)\:+\:{c}\: \\ $$

Commented by liberty last updated on 26/Nov/20

good

$${good} \\ $$

Commented by liberty last updated on 26/Nov/20

in other way  let (√(x+1+(1/x))) = u ⇒1−(1/x^2 ) dx=2u du  I(x)=∫ ((2u du)/((u^2 +1)u)) = 2arctan ((√((x^2 +x+1)/x)))+c

$${in}\:{other}\:{way} \\ $$$${let}\:\sqrt{{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}}}\:=\:{u}\:\Rightarrow\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{dx}=\mathrm{2}{u}\:{du} \\ $$$${I}\left({x}\right)=\int\:\frac{\mathrm{2}{u}\:{du}}{\left({u}^{\mathrm{2}} +\mathrm{1}\right){u}}\:=\:\mathrm{2arctan}\:\left(\sqrt{\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{{x}}}\right)+{c} \\ $$

Commented by MJS_new last updated on 26/Nov/20

that′s exactly what I did

$$\mathrm{that}'\mathrm{s}\:\mathrm{exactly}\:\mathrm{what}\:\mathrm{I}\:\mathrm{did} \\ $$

Answered by MJS_new last updated on 26/Nov/20

∫((x−1)/((x+1)(√(x(x^2 +x+1)))))dx=       [t=((√(x^2 +x+1))/( (√x))) → dx=((2x^(3/2) (√(x^2 +x+1)))/(x^2 −1))]  =2∫(dt/(t^2 +1))=2arctan t =2arctan ((√(x^2 +x+1))/( (√x))) +C

$$\int\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\sqrt{{x}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{\:\sqrt{{x}}}\:\rightarrow\:{dx}=\frac{\mathrm{2}{x}^{\mathrm{3}/\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{{x}^{\mathrm{2}} −\mathrm{1}}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}=\mathrm{2arctan}\:{t}\:=\mathrm{2arctan}\:\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{\:\sqrt{{x}}}\:+{C} \\ $$

Commented by bramlexs22 last updated on 26/Nov/20

i don′t think how you get t=((√(x^2 +x+1))/( (√x))) ?

$${i}\:{don}'{t}\:{think}\:{how}\:{you}\:{get}\:{t}=\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{\:\sqrt{{x}}}\:? \\ $$

Commented by MJS_new last updated on 26/Nov/20

part experience, part intuition. integrals  of the shape ∫((f(x))/( (√(g(x)))(√(h(x)))))dx can often get  solved by substituting t=((√(g(x)))/( (√(h(x)))))  ((√(x^2 +x+1))/( (√x)))=(√(x+1+(1/x))) so it′s the same path

$$\mathrm{part}\:\mathrm{experience},\:\mathrm{part}\:\mathrm{intuition}.\:\mathrm{integrals} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{shape}\:\int\frac{{f}\left({x}\right)}{\:\sqrt{{g}\left({x}\right)}\sqrt{{h}\left({x}\right)}}{dx}\:\mathrm{can}\:\mathrm{often}\:\mathrm{get} \\ $$$$\mathrm{solved}\:\mathrm{by}\:\mathrm{substituting}\:{t}=\frac{\sqrt{{g}\left({x}\right)}}{\:\sqrt{{h}\left({x}\right)}} \\ $$$$\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{\:\sqrt{{x}}}=\sqrt{{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}}}\:\mathrm{so}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{path} \\ $$

Commented by bramlexs22 last updated on 26/Nov/20

oo thank you sir for your sharing

$${oo}\:{thank}\:{you}\:{sir}\:{for}\:{your}\:{sharing} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com