Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36547 by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

∫((5x^4 +4x^5 )/((x^5 +x+1)^2 ))

5x4+4x5(x5+x+1)2

Answered by ajfour last updated on 03/Jun/18

=−∫(((−(5/x^6 )−(4/x^5 ))dx)/((1+(1/x^4 )+(1/x^5 ))^2 ))=−∫(dt/t^2 )   =(1/t)+c  = (x^5 /(x^5 +x+1))+c .

=(5x64x5)dx(1+1x4+1x5)2=dtt2=1t+c=x5x5+x+1+c.

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

bah...very good...excellent...

bah...verygood...excellent...

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

sir ajfour forgot to put square in D_r

sirajfourforgottoputsquareinDr

Commented by ajfour last updated on 03/Jun/18

yes, very silly !

yes,verysilly!

Answered by MJS last updated on 03/Jun/18

Ostrogradski′s Method once more  ∫((p(x))/(q(x)))dx=((p_1 (x))/(q_1 (x)))+∫((p_2 (x))/(q_2 (x)))dx  q_1 (x)=gcd(q(x), q′(x))  q_2 (x)=((q(x))/(q_1 (x)))  p_1 , p_2  (polynomes, degree(p_i )<degree(q_i ))  we get like this:  (∫((p(x))/(q(x)))dx=((p_1 (x))/(q_1 (x)))+∫((p_2 (x))/(q_2 (x)))dx)′ ⇒  ⇒ ((p(x))/(q(x)))=(((p_1 (x))/(q_1 (x))))′+((p_2 (x))/(q_2 (x)))  match the constants    in this case  p(x)=4x^5 +5x^4   q(x)=(x^5 +x+1)^2   q′(x)=2(5x^4 +1)(x^5 +x+1)  q_1 (x)=q_2 (x)=x^5 +x+1  ((4x^5 +5x^4 )/((x^5 +x+1)^2 ))=(((c_1 x^4 +c_2 x^3 +c_3 x^2 +c_4 x+c_5 )/(x^5 +x+1)))′+((c_6 x^4 +c_7 x^3 +c_8 x^2 +c_9 x+c_(10) )/(x^5 +x+1)) ⇒  ⇒ c_4 =−1; c_5 =−1; all other c_i =0  p_1 (x)=−x−1  p_2 (x)=0    ∫((5x^4 +4x^5 )/((x^5 +x+1)^2 ))=−((x+1)/(x^5 +x+1))+C

OstrogradskisMethodoncemorep(x)q(x)dx=p1(x)q1(x)+p2(x)q2(x)dxq1(x)=gcd(q(x),q(x))q2(x)=q(x)q1(x)p1,p2(polynomes,degree(pi)<degree(qi))wegetlikethis:(p(x)q(x)dx=p1(x)q1(x)+p2(x)q2(x)dx)p(x)q(x)=(p1(x)q1(x))+p2(x)q2(x)matchtheconstantsinthiscasep(x)=4x5+5x4q(x)=(x5+x+1)2q(x)=2(5x4+1)(x5+x+1)q1(x)=q2(x)=x5+x+14x5+5x4(x5+x+1)2=(c1x4+c2x3+c3x2+c4x+c5x5+x+1)+c6x4+c7x3+c8x2+c9x+c10x5+x+1c4=1;c5=1;allotherci=0p1(x)=x1p2(x)=05x4+4x5(x5+x+1)2=x+1x5+x+1+C

Commented by MJS last updated on 03/Jun/18

...I didn′t see it either...

...Ididntseeiteither...

Commented by ajfour last updated on 03/Jun/18

please check.

pleasecheck.

Commented by MJS last updated on 03/Jun/18

(−((x+1)/(x^5 +x+1)))′=−(((x^5 +x+1)−(x+1)(5x^4 +1))/((x^5 +x+1)^2 ))=  =−((−4x^5 +5x^4 )/((x^5 +x+1)^2 ))=((5x^4 +4x^5 )/((x^5 +x+1)^2 ))  ...so this is true too...    (x^5 /(x^5 +x+1))−1=−((x+1)/(x^5 +x+1)) so it′s just different C

(x+1x5+x+1)=(x5+x+1)(x+1)(5x4+1)(x5+x+1)2==4x5+5x4(x5+x+1)2=5x4+4x5(x5+x+1)2...sothisistruetoo...x5x5+x+11=x+1x5+x+1soitsjustdifferentC

Commented by ajfour last updated on 03/Jun/18

o′ yes! thanks.

oyes!thanks.

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

∫((5x^4 +4x^5 )/((x^5 +x+1)^2 ))dx  ∫((5x^4 +4x^5 )/({x^5 (1+(1/x^4 )+(1/x^5 ))}^2 ))  ∫(((5x^4 +4x^5 )/x^(10) )/((1+(1/x^4 )+(1/x^5 ))^2 ))dx  ∫(((5/x^6 )+(4/x^5 ))/((1+(1/x^4 )+(1/x^5 ))^2 ))  t=1+(1/x^4 )+(1/x^5 )  dt=0+((−4)/x^5 )+((−5)/x^6 ) dx  ∫((−dt)/t^2 )  =−1∫t^(−2) dt  =(1/t)+c....ans  =(1/(1+(1/x^4 )+(1/x^5 )))+c   ans  y=(x^5 /(x^5 +x+1))+c  (dy/dx)=(((x^5 +x+1)5x^4 −x^5 (5x^4 +1))/((x^5 +x+1)^2 ))  =((5x^9 +5x^5 +5x^4 −5x^9 −x^5 )/((x^5 +x+1)^2 ))  =((4x^5 +5x^4 )/((x^5 +x+1)^2 ))  so my answer is correct...

5x4+4x5(x5+x+1)2dx5x4+4x5{x5(1+1x4+1x5)}25x4+4x5x10(1+1x4+1x5)2dx5x6+4x5(1+1x4+1x5)2t=1+1x4+1x5dt=0+4x5+5x6dxdtt2=1t2dt=1t+c....ans=11+1x4+1x5+cansy=x5x5+x+1+cdydx=(x5+x+1)5x4x5(5x4+1)(x5+x+1)2=5x9+5x5+5x45x9x5(x5+x+1)2=4x5+5x4(x5+x+1)2somyansweriscorrect...

Commented by ajfour last updated on 03/Jun/18

thanks, i′ve corrected.

thanks,ivecorrected.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com