All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 36563 by bshahid010@gmail.com last updated on 03/Jun/18
Commented by prof Abdo imad last updated on 03/Jun/18
letusethechangementax=tlimx→a(2−ax)tan(πx2a)=limt→1(2−t)tan(π2t)=limt→1etan(π2t)ln(2−t)forthatletfindlimt→1tan(π2t)ln(2−t)changement1−t=ugivetan(π2t)ln(2−t)=tan(π2(1−u))ln(1+u)butln(1+u)∼uandπ2(1−u)∼π2(1+u)⇒tan(π2+πu2)=−1tan(πu2)⇒tan(π2(1−u))ln(1+u)∼−utan(π2u)=−π2uπ2tan(π2u)∼−2π(u→o)⇒limx→a(2−ax)tan(πx2a)=e−2π.
Answered by ajfour last updated on 03/Jun/18
L=limx→a{[1+(1−ax)]11−ax}1−axtan(π2(1−xa))⇒L=e2π.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com