Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 36563 by bshahid010@gmail.com last updated on 03/Jun/18

Commented by prof Abdo imad last updated on 03/Jun/18

let use the changement  (a/x) =t  lim_(x→a) (2−(a/x))^(tan(((πx)/(2a))))  =lim_(t→1) (2−t)^(tan( (π/(2t))))   =lim_(t→1)  e^(tan((π/(2t)))ln(2−t))     for that let find  lim_(t→1)    tan((π/(2t)))ln(2−t)  changement  1−t =u give  tan( (π/(2t)))ln(2−t) =tan( (π/(2(1−u))))ln( 1+u)but  ln(1+u) ∼ u and (π/(2(1−u))) ∼ (π/2)( 1+u) ⇒  tan((π/2) +((πu)/2)) =−(1/(tan(((πu)/2)))) ⇒  tan( (π/(2(1−u))))ln(1+u) ∼ ((−u)/(tan((π/2)u)))  =−(((π/2)u)/((π/2)tan((π/2)u))) ∼ ((−2)/π)(  u →o) ⇒  lim_(x→a)  (2−(a/x))^(tan( ((πx)/(2a))))  = e^(−(2/π))   .

letusethechangementax=tlimxa(2ax)tan(πx2a)=limt1(2t)tan(π2t)=limt1etan(π2t)ln(2t)forthatletfindlimt1tan(π2t)ln(2t)changement1t=ugivetan(π2t)ln(2t)=tan(π2(1u))ln(1+u)butln(1+u)uandπ2(1u)π2(1+u)tan(π2+πu2)=1tan(πu2)tan(π2(1u))ln(1+u)utan(π2u)=π2uπ2tan(π2u)2π(uo)limxa(2ax)tan(πx2a)=e2π.

Answered by ajfour last updated on 03/Jun/18

L=lim_(x→a) {[1+(1−(a/x))]^(1/(1−(a/x))) }^((1−(a/x))/(tan ((π/2)(1−(x/a)))))   ⇒  L = e^(2/π)  .

L=limxa{[1+(1ax)]11ax}1axtan(π2(1xa))L=e2π.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com