Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36649 by rahul 19 last updated on 03/Jun/18

∫ (1/(x^4 +1)) dx

1x4+1dx

Commented by rahul 19 last updated on 03/Jun/18

∫ ((1/x^2 )/(x^2 +(1/x^2 ))) dx   ⇒∫ ((1+(1/x^2 )−1)/(x^2 +(1/x^2 ))) dx  ⇒∫ ((1+(1/x^2 ))/((x−(1/x))^2 +2))dx − ∫ (1/((x−(1/x))^2 +2))dx  Continue....

1x2x2+1x2dx1+1x21x2+1x2dx1+1x2(x1x)2+2dx1(x1x)2+2dxContinue....

Commented by rahul 19 last updated on 03/Jun/18

By doing this way i am getting wrong  result ! Can someone continue from  here and do check?

Bydoingthiswayiamgettingwrongresult!Cansomeonecontinuefromhereanddocheck?

Commented by abdo mathsup last updated on 03/Jun/18

the best way is to decompose the fraction  F(x) =(1/(1+x^2 ))

thebestwayistodecomposethefractionF(x)=11+x2

Commented by abdo mathsup last updated on 04/Jun/18

let decompose the ftaction  F(x)= (1/(x^4  +1))  F(x)= (1/((x^2  +1)^2  −2x^2 )) =(1/((x^2  +1 +x(√2) )(x^2  +1 −x(√2))))  =  ((ax +b)/(x^2  +x(√2) +1))) +((cx+d)/(x^2  −x(√2) +1))  F(−x)=F(x) ⇒   ((−ax +b)/(x^2  −x(√2) +1)) + ((−cx +d)/(x^2  +x(√2)  +1)) =F(x)⇒  a=−c  and  b=d ⇒   F(x)= ((ax+b)/(x^2  +x(√2)  +1)) +((−ax +b)/(x^2  −x(√2) +1))  F(0) =1 = b +b =2b ⇒b=(1/2)  F(x) = (1/2)   ((2ax +1)/(x^2  +(√2)+1))  +(1/2) ((−2ax +1)/(x^2  −x(√2) +1))  F(1) =(1/2) =(1/2){   ((2a+1)/(2+(√2)))  +((−2a+1)/(2−(√2)))} ⇒  (2−(√2))(2a+1) +(2+(√2))(−2a+1)=2  2(2−(√2))a +2−(√2)   −2(2+(√2))a  +2+(√2) =2  −4(√2) a  +4  =2 ⇒−4(√2)a =−2 ⇒ a = (1/(2(√2))) so  F(x)= (1/2){ (((x/(√2)) +1)/(x^2  +(√2)x +1))  +((−(x/(√2)) +1)/(x^2  −x(√2) x+1))}  =(1/(2(√2))){  ((x+(√2))/(x^2  +(√2)x +1)) +((−x +(√2))/(x^2  −x(√2) +1))}  2(√2) I = ∫   ((x +(√2))/(x^2  +(√2)x+1))dx  − ∫   ((x−(√2))/(x^2 −x(√2) +1))dx  but  ∫    ((x+(√2))/(x^2  +(√2)x+1))dx = (1/2)∫   ((2x +(√2) +(√2))/(x^2  +(√2)x +1))dx  =(1/2)ln(x^2  +(√2)x +1) +((√2)/2) ∫    (dx/(x^2  +(√2)x +1))  ∫       (dx/(x^2  +(√2)x +1)) = ∫     (dx/((x+((√2)/2))^2   +(3/4))) and we use  the chang. x+((√2)/2) =((√3)/2) t  ∫ (...)dx =(4/3) ∫      (1/(1+t^2 )) ((√3)/2) dt  =((2(√3))/3) arctan(((2x+(√2))/(√3))) +c   .....

letdecomposetheftactionF(x)=1x4+1F(x)=1(x2+1)22x2=1(x2+1+x2)(x2+1x2)=ax+bx2+x2+1)+cx+dx2x2+1F(x)=F(x)ax+bx2x2+1+cx+dx2+x2+1=F(x)a=candb=dF(x)=ax+bx2+x2+1+ax+bx2x2+1F(0)=1=b+b=2bb=12F(x)=122ax+1x2+2+1+122ax+1x2x2+1F(1)=12=12{2a+12+2+2a+122}(22)(2a+1)+(2+2)(2a+1)=22(22)a+222(2+2)a+2+2=242a+4=242a=2a=122soF(x)=12{x2+1x2+2x+1+x2+1x2x2x+1}=122{x+2x2+2x+1+x+2x2x2+1}22I=x+2x2+2x+1dxx2x2x2+1dxbutx+2x2+2x+1dx=122x+2+2x2+2x+1dx=12ln(x2+2x+1)+22dxx2+2x+1dxx2+2x+1=dx(x+22)2+34andweusethechang.x+22=32t(...)dx=4311+t232dt=233arctan(2x+23)+c.....

Answered by ajfour last updated on 03/Jun/18

=(1/2)∫((1−(1/x^2 ))/((x+(1/x))^2 −((√2))^2 )) dx         +(1/2)∫((1+(1/x^2 ))/((x−(1/x))^2 +((√2))^2 )) dx  =(1/(4(√2)))ln ∣((x+(1/x)−(√2))/(x+(1/x)+(√2)))∣           +(1/(2(√2)))tan^(−1) (((x−(1/x)+(√2))/(√2)))+c .

=1211x2(x+1x)2(2)2dx+121+1x2(x1x)2+(2)2dx=142lnx+1x2x+1x+2+122tan1(x1x+22)+c.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com