Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36659 by rahul 19 last updated on 03/Jun/18

∫ (1/(sin^4 x+cos^4 x)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}}\:{dx} \\ $$

Commented by MJS last updated on 03/Jun/18

see my answers to Qu. 36428

$$\mathrm{see}\:\mathrm{my}\:\mathrm{answers}\:\mathrm{to}\:\mathrm{Qu}.\:\mathrm{36428} \\ $$

Commented by prof Abdo imad last updated on 03/Jun/18

this integral is solved see the platform

$${this}\:{integral}\:{is}\:{solved}\:{see}\:{the}\:{platform} \\ $$

Commented by math khazana by abdo last updated on 11/Aug/18

let I  = ∫   (dx/(sin^4 x +cos^4 x))  we have   I  = ∫     (dx/((cos^2 x +sin^2 x)^2  −2cos^2 x sin^2 x))  = ∫    (dx/(1−(1/2)sin^2 (2x))) =_(2x=t)     ∫      (1/(1−(1/2)sin^2 t)) (dt/2)  = ∫     (dt/(2−sin^2 t)) = ∫     (dt/(1+cos^2 t)) = ∫    (dt/(1+(1/(1+tan^2 t))))  = ∫     ((1+tan^2 t)/(2+tan^2 t)) dt =_(tant =u)    ∫     ((1+u^2 )/(2+u^2 )) (du/(1+u^2 ))  = ∫     (du/(2+u^2 ))  =_(u=(√2)α)   ∫     (((√2)dα)/(2(1+α^2 )))  =((√2)/2) arctan((u/(√2)))+c  =((√2)/2) arctan(((tant)/(√2)))+c  =((√2)/2) arctan(((tan(2x))/(√2))) +c ⇒  I  =((√2)/2) arctan(((tan(2x))/(√2))) +c .

$${let}\:{I}\:\:=\:\int\:\:\:\frac{{dx}}{{sin}^{\mathrm{4}} {x}\:+{cos}^{\mathrm{4}} {x}}\:\:{we}\:{have}\: \\ $$$${I}\:\:=\:\int\:\:\:\:\:\frac{{dx}}{\left({cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} \:−\mathrm{2}{cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{2}} {x}} \\ $$$$=\:\int\:\:\:\:\frac{{dx}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}\:=_{\mathrm{2}{x}={t}} \:\:\:\:\int\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} {t}}\:\frac{{dt}}{\mathrm{2}} \\ $$$$=\:\int\:\:\:\:\:\frac{{dt}}{\mathrm{2}−{sin}^{\mathrm{2}} {t}}\:=\:\int\:\:\:\:\:\frac{{dt}}{\mathrm{1}+{cos}^{\mathrm{2}} {t}}\:=\:\int\:\:\:\:\frac{{dt}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}} \\ $$$$=\:\int\:\:\:\:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {t}}{\mathrm{2}+{tan}^{\mathrm{2}} {t}}\:{dt}\:=_{{tant}\:={u}} \:\:\:\int\:\:\:\:\:\frac{\mathrm{1}+{u}^{\mathrm{2}} }{\mathrm{2}+{u}^{\mathrm{2}} }\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int\:\:\:\:\:\frac{{du}}{\mathrm{2}+{u}^{\mathrm{2}} }\:\:=_{{u}=\sqrt{\mathrm{2}}\alpha} \:\:\int\:\:\:\:\:\frac{\sqrt{\mathrm{2}}{d}\alpha}{\mathrm{2}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{arctan}\left(\frac{{u}}{\sqrt{\mathrm{2}}}\right)+{c} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{arctan}\left(\frac{{tant}}{\sqrt{\mathrm{2}}}\right)+{c} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{arctan}\left(\frac{{tan}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{2}}}\right)\:+{c}\:\Rightarrow \\ $$$${I}\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{arctan}\left(\frac{{tan}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{2}}}\right)\:+{c}\:. \\ $$

Answered by ajfour last updated on 03/Jun/18

∫((1+t^2 )/(1+t^4 )) dt     if  t=tan x  =∫((1+(1/t^2 ))/((t−(1/t))^2 +((√2))^2 )) dt  =(1/(√2))tan^(−1) (((tan x−cot x)/(√2)))+c   =(1/(√2))tan^(−1) (−(√2)cot 2x)+c .

$$\int\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\:{dt}\:\:\:\:\:{if}\:\:{t}=\mathrm{tan}\:{x} \\ $$$$=\int\frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }\:{dt} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:{x}−\mathrm{cot}\:{x}}{\sqrt{\mathrm{2}}}\right)+{c}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(−\sqrt{\mathrm{2}}\mathrm{cot}\:\mathrm{2}{x}\right)+{c}\:. \\ $$

Commented by rahul 19 last updated on 03/Jun/18

Thanks sir ����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com