Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 36660 by Tinkutara last updated on 03/Jun/18

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18

(1/(a+w))+(1/(b+w))+(1/(c+w))+(1/(d+w))=((2w^3 )/w)=(2/w)  (1/(a+w^2 ))+(1/(b+w^2 ))+(1/(c+w^2 ))+(1/(d+w^2 ))=((2w^3 )/w^2 )=(2/w^2 )  nw  (1/(a+x))+(1/(b+x))+(1/(c+x))+(1/(d+x))=(2/x)  this equation have...eqn1  roots  w and w^2 ...because if in place of x put w  first identity  and if x replaced by w^2   second one...  ((b+x+a+x)/(ab+ax+bx+x^2 ))+((d+x+c+x)/(cd+cx+dx+x^2 ))−(2/x)=0  ((a+b+2x)/(ab+ax+bx+x^2 ))−(1/x)+((c+d+2x)/(cd+cx+dx+x^2 ))−(1/x)=0  ((ax+bx+2x^2  −ab−ax−bx−x^2 )/((ab+ax+bx+x^2 )x))+  ((cx+dx+2x^2 −cd−cx−dx−x^2 ))/((cd+cx+dx+x^2 )x))=0  ((x^2 −ab)/(N_1 x))+((x^2 −cd)/(N_2 x))=0  (x^2 −ab)(cd+cx+dx+x^2 )+(x^2 −cd)(ab+ax+bx  +x^2 )=0  x^4 +cx^3 +dx^3 +cdx^2 −abcd−abcx−abdx−abx^2   +x^4 +ax^3 +bx^3  +abx^2 −abcd−acdx−bcdx−  cdx^2 =0  2x^4 +x^3 (a+b+c+d)+x^2 (0)+x(−abc−abd−acd   −bcd)−2abcd=0  four roots w+w^2 +α+β=−(a+b+c+d)/2  w×w^2 +wα+wβ+w^2 α+w^2 β+αβ=0  1+α(w+w^2 )+β(w+w^2 )+αβ=0  1−α−β+αβ=0  (1−α)−β(1−α)=0  (1−α)(1−β)=0  so either α=1 or β=1  so eqn  (1/(a+x))+(1/(b+x))+(1/(c+x))+(1/(d+x))=(2/x)  has four  roots..w,w^2 ,1 foirth root to find  since 1 is root  hence x can be replaced by 1  hence   (1/(a+1))+(1/(b+1))+(1/(c+1))+(1/(1+1))=(2/1) proved  i have taken hintsfrom higher algebra  Barnard and child and Hall and knkght to  prove it

$$\frac{\mathrm{1}}{{a}+{w}}+\frac{\mathrm{1}}{{b}+{w}}+\frac{\mathrm{1}}{{c}+{w}}+\frac{\mathrm{1}}{{d}+{w}}=\frac{\mathrm{2}{w}^{\mathrm{3}} }{{w}}=\frac{\mathrm{2}}{{w}} \\ $$$$\frac{\mathrm{1}}{{a}+{w}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}+{w}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}+{w}^{\mathrm{2}} }+\frac{\mathrm{1}}{{d}+{w}^{\mathrm{2}} }=\frac{\mathrm{2}{w}^{\mathrm{3}} }{{w}^{\mathrm{2}} }=\frac{\mathrm{2}}{{w}^{\mathrm{2}} } \\ $$$${nw} \\ $$$$\frac{\mathrm{1}}{{a}+{x}}+\frac{\mathrm{1}}{{b}+{x}}+\frac{\mathrm{1}}{{c}+{x}}+\frac{\mathrm{1}}{{d}+{x}}=\frac{\mathrm{2}}{{x}}\:\:{this}\:{equation}\:{have}...{eqn}\mathrm{1} \\ $$$${roots}\:\:{w}\:{and}\:{w}^{\mathrm{2}} ...{because}\:{if}\:{in}\:{place}\:{of}\:{x}\:{put}\:{w} \\ $$$${first}\:{identity}\:\:{and}\:{if}\:{x}\:{replaced}\:{by}\:{w}^{\mathrm{2}} \\ $$$${second}\:{one}... \\ $$$$\frac{{b}+{x}+{a}+{x}}{{ab}+{ax}+{bx}+{x}^{\mathrm{2}} }+\frac{{d}+{x}+{c}+{x}}{{cd}+{cx}+{dx}+{x}^{\mathrm{2}} }−\frac{\mathrm{2}}{{x}}=\mathrm{0} \\ $$$$\frac{{a}+{b}+\mathrm{2}{x}}{{ab}+{ax}+{bx}+{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}}+\frac{{c}+{d}+\mathrm{2}{x}}{{cd}+{cx}+{dx}+{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}}=\mathrm{0} \\ $$$$\frac{{ax}+{bx}+\mathrm{2}{x}^{\mathrm{2}} \:−{ab}−{ax}−{bx}−{x}^{\mathrm{2}} }{\left({ab}+{ax}+{bx}+{x}^{\mathrm{2}} \right){x}}+ \\ $$$$\frac{\left.{cx}+{dx}+\mathrm{2}{x}^{\mathrm{2}} −{cd}−{cx}−{dx}−{x}^{\mathrm{2}} \right)}{\left({cd}+{cx}+{dx}+{x}^{\mathrm{2}} \right){x}}=\mathrm{0} \\ $$$$\frac{{x}^{\mathrm{2}} −{ab}}{{N}_{\mathrm{1}} {x}}+\frac{{x}^{\mathrm{2}} −{cd}}{{N}_{\mathrm{2}} {x}}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −{ab}\right)\left({cd}+{cx}+{dx}+{x}^{\mathrm{2}} \right)+\left({x}^{\mathrm{2}} −{cd}\right)\left({ab}+{ax}+{bx}\right. \\ $$$$\left.+{x}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} +{cx}^{\mathrm{3}} +{dx}^{\mathrm{3}} +{cdx}^{\mathrm{2}} −{abcd}−{abcx}−{abdx}−{abx}^{\mathrm{2}} \\ $$$$+{x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{3}} \:+{abx}^{\mathrm{2}} −{abcd}−{acdx}−{bcdx}− \\ $$$${cdx}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{4}} +{x}^{\mathrm{3}} \left({a}+{b}+{c}+{d}\right)+{x}^{\mathrm{2}} \left(\mathrm{0}\right)+{x}\left(−{abc}−{abd}−{acd}\right. \\ $$$$\left.\:−{bcd}\right)−\mathrm{2}{abcd}=\mathrm{0} \\ $$$${four}\:{roots}\:{w}+{w}^{\mathrm{2}} +\alpha+\beta=−\left({a}+{b}+{c}+{d}\right)/\mathrm{2} \\ $$$${w}×{w}^{\mathrm{2}} +{w}\alpha+{w}\beta+{w}^{\mathrm{2}} \alpha+{w}^{\mathrm{2}} \beta+\alpha\beta=\mathrm{0} \\ $$$$\mathrm{1}+\alpha\left({w}+{w}^{\mathrm{2}} \right)+\beta\left({w}+{w}^{\mathrm{2}} \right)+\alpha\beta=\mathrm{0} \\ $$$$\mathrm{1}−\alpha−\beta+\alpha\beta=\mathrm{0} \\ $$$$\left(\mathrm{1}−\alpha\right)−\beta\left(\mathrm{1}−\alpha\right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−\alpha\right)\left(\mathrm{1}−\beta\right)=\mathrm{0} \\ $$$${so}\:{either}\:\alpha=\mathrm{1}\:{or}\:\beta=\mathrm{1} \\ $$$${so}\:{eqn} \\ $$$$\frac{\mathrm{1}}{{a}+{x}}+\frac{\mathrm{1}}{{b}+{x}}+\frac{\mathrm{1}}{{c}+{x}}+\frac{\mathrm{1}}{{d}+{x}}=\frac{\mathrm{2}}{{x}} \\ $$$${has}\:{four}\:\:{roots}..{w},{w}^{\mathrm{2}} ,\mathrm{1}\:{foirth}\:{root}\:{to}\:{find} \\ $$$${since}\:\mathrm{1}\:{is}\:{root} \\ $$$${hence}\:{x}\:{can}\:{be}\:{replaced}\:{by}\:\mathrm{1} \\ $$$${hence}\: \\ $$$$\frac{\mathrm{1}}{{a}+\mathrm{1}}+\frac{\mathrm{1}}{{b}+\mathrm{1}}+\frac{\mathrm{1}}{{c}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}=\frac{\mathrm{2}}{\mathrm{1}}\:{proved} \\ $$$${i}\:{have}\:{taken}\:{hintsfrom}\:{higher}\:{algebra} \\ $$$${Barnard}\:{and}\:{child}\:{and}\:{Hall}\:{and}\:{knkght}\:{to} \\ $$$${prove}\:{it} \\ $$$$ \\ $$$$ \\ $$

Commented by Tinkutara last updated on 05/Jun/18

Thank you very much Sir! I got the answer. ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com