Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36677 by mondodotto@gmail.com last updated on 04/Jun/18

Commented by prof Abdo imad last updated on 04/Jun/18

3) let decompose F(x)= ((2x^3  −4x −8)/((x^2 −x)(x^2  +4)))  F(x)= ((2x^3 −4x −8)/(x(x−1)(x^2  +4)))= (a/x) + (b/(x−1)) +((cx+d)/(x^2  +4))  a=lim_(x→0) x F(x)= ((−8)/(−4)) =2  b=lim_(x→1) (x−1)F(x)= ((−10)/5) =−2 ⇒  F(x)= (2/x) −(2/(x−1)) +((cx+d)/(x^2  +4))  lim_(x→+∞) x F(x)=2 =c ⇒  F(x)= (2/x) −(2/(x−1)) +((2x+d)/(x^2  +4))  F(2) = 0 = 1 −2 +((4+d)/8) =−1 +((4+d)/8) =((−4+d)/8)  ⇒d =4 ⇒  F(x)= (2/x) −(2/(x−1)) +((2x+4)/(x^2  +4)) ⇒  ∫ F(x)dx =2ln∣x∣ −2ln∣x−1∣  +∫  ((2x)/(x^2  +4))  4 ∫   (dx/(x^(2 )  +4)) =2ln∣x∣ −2ln∣x−1∣ +ln(x^2  +4)  +4 ∫  (dx/(x^2  +4))  but ∫   (dx/(x^2  +4)) =_(x=2t)  ∫   (1/(4(1+t^2 ))) (dt/2)  =(1/8) arctan((x/2)) ⇒  ∫ F(x)dx = 2ln∣x∣ −2ln∣x−1∣ +ln(x^2  +4)  +(1/2) arctan((x/2)) .

3)letdecomposeF(x)=2x34x8(x2x)(x2+4)F(x)=2x34x8x(x1)(x2+4)=ax+bx1+cx+dx2+4a=limx0xF(x)=84=2b=limx1(x1)F(x)=105=2F(x)=2x2x1+cx+dx2+4limx+xF(x)=2=cF(x)=2x2x1+2x+dx2+4F(2)=0=12+4+d8=1+4+d8=4+d8d=4F(x)=2x2x1+2x+4x2+4F(x)dx=2lnx2lnx1+2xx2+44dxx2+4=2lnx2lnx1+ln(x2+4)+4dxx2+4butdxx2+4=x=2t14(1+t2)dt2=18arctan(x2)F(x)dx=2lnx2lnx1+ln(x2+4)+12arctan(x2).

Commented by abdo mathsup last updated on 04/Jun/18

1) le t  I =  ∫     (dx/(1+e^x ))  changement  e^x  =t give  I = ∫      (1/(1+t))  (dt/t) =∫ ((1/t) −(1/(1+t)))dt  =ln∣ (t/(1+t))∣ +c = ln∣ (e^x /(e^x  +1)) ∣ +c  =x −ln( 1+e^x ) +c .

1)letI=dx1+exchangementex=tgiveI=11+tdtt=(1t11+t)dt=lnt1+t+c=lnexex+1+c=xln(1+ex)+c.

Commented by Cheyboy last updated on 04/Jun/18

1. ∫ (1/(1+e^x ))dx   ∫  ((1+e^x −e^x )/(1+e^x ))   ∫ (((1+e^x )/(1+e^x )) − (e^x /(1+e^x ))) dx  ∫ (1 − (e^x /(1+e^x )))  let u=1+e^x   du= e^x dx  x −∫ (1/u) du  x−ln∣u∣  x−ln∣1+e^x ∣+C

1.11+exdx1+exex1+ex(1+ex1+exex1+ex)dx(1ex1+ex)letu=1+exdu=exdxx1uduxlnuxln1+ex+C

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18

∫((5x^2 +20x+6)/(x(x+1)(x+1)))dx  =((5x^2 +20x+6)/(x(x+1)(x+1)))=(a/x)+(b/(x+1))+(c/((x+1)^2 ))  5x^2 +20x+6=a(x^2 +2x+1)+b(x^2 +x)+cx  do=x^2 (a+b)+x(2a+b+c)+a  5x^2 +20x+6=x^2 (a+b)+x(2a+b+c)+a  a=6  a+b=5  b=5−6=−1  12−1+c=20  c=9  ∫(6/x)dx+∫((−1)/(x+1))dx+∫(9/((x+1)^2 ))  6lnx−ln(x+1)−(9/(x+1))

5x2+20x+6x(x+1)(x+1)dx=5x2+20x+6x(x+1)(x+1)=ax+bx+1+c(x+1)25x2+20x+6=a(x2+2x+1)+b(x2+x)+cxdo=x2(a+b)+x(2a+b+c)+a5x2+20x+6=x2(a+b)+x(2a+b+c)+aa=6a+b=5b=56=1121+c=20c=96xdx+1x+1dx+9(x+1)26lnxln(x+1)9x+1

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18

1)∫(e^(−x) /(e^(−x) +1))dx  =t=e^(−x) +1  dt=−e^(−x) dx  ∫((−dt)/t)  −lnt +c  −ln(e^(−x) +1) +c

1)exex+1dx=t=ex+1dt=exdxdttlnt+cln(ex+1)+c

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18

∫((2x^3 −4x−8)/((x^2 −x)(x^2 +4)))dx  ((2x^3 −4x−8)/(x(x−1)(x^2 +4)))=(a/x)+(b/(x−1))+((cx+d)/(x^2 +4))  2x^3 −4x−8=a(x^3 +4x−x^2 −4)+b(x^3 +4x)     +(cx+d)(x^2 −x)  LHS=a(x^3 −x^2 +4x−4)+b(x^3 +4x)+(cx^3 −cx^2     +dx^2 −dx)  LHS=x^3 (a+b+c)+x^2 (−a−c+d)+x(4a+4b−d)  +(−4a)  −4a=−8  a=2  −2−c+d=0    d=2+c  8+4b−d=−4  2+b+c=2  b+c=0  b=−c  8+4b−d=−4  8−4c−2−c=−4  −5c=−4−8+2  c=2  b=−2  d=2+2=4  a=2  b=−2    c=2   d=4  ∫(2/x)dx+∫((−2)/(x−1))dx+∫((2x+4)/(x^2 +4))  lnx−2ln(x−1)+∫((2x)/(x^2 +4))dx+4∫(dx/(x^2 +4))  lnx−2ln(x−1)+ln(x^2 +4)+(4/(/))×(1/2)tan^(−1) ((x/2))

2x34x8(x2x)(x2+4)dx2x34x8x(x1)(x2+4)=ax+bx1+cx+dx2+42x34x8=a(x3+4xx24)+b(x3+4x)+(cx+d)(x2x)LHS=a(x3x2+4x4)+b(x3+4x)+(cx3cx2+dx2dx)LHS=x3(a+b+c)+x2(ac+d)+x(4a+4bd)+(4a)4a=8a=22c+d=0d=2+c8+4bd=42+b+c=2b+c=0b=c8+4bd=484c2c=45c=48+2c=2b=2d=2+2=4a=2b=2c=2d=42xdx+2x1dx+2x+4x2+4lnx2ln(x1)+2xx2+4dx+4dxx2+4lnx2ln(x1)+ln(x2+4)+4×12tan1(x2)

Answered by MJS last updated on 04/Jun/18

6.  ∫((sec^2  x)/(tan x (tan x +1)))dx=            [t=tan x → dx=(dt/(sec^2  x))]  =∫(dt/(t(t+1)))=∫(A/t)dt+∫(B/(t+1))dt=  =∫(dt/t)−∫(dt/(t+1))=ln t −ln(t+1)=  =ln∣tan x∣−ln∣tan x +1∣+C    7.  ∫((3cos x)/(sin^2  x +sin x −2))dx=            [t=sin x → dx=(dt/(cos x))]  =∫(3/(t^2 +t−2))dt=∫(3/((t−1)(t+2)))dt=  =∫(dt/(t−1))−∫(dt/(t+2))=ln(t−1)−ln(t+2)=            [∣sin x −1∣=1−sin x]  =ln(1−sin x)−ln(2+sin x)+C

6.sec2xtanx(tanx+1)dx=[t=tanxdx=dtsec2x]=dtt(t+1)=Atdt+Bt+1dt==dttdtt+1=lntln(t+1)==lntanxlntanx+1+C7.3cosxsin2x+sinx2dx=[t=sinxdx=dtcosx]=3t2+t2dt=3(t1)(t+2)dt==dtt1dtt+2=ln(t1)ln(t+2)=[sinx1∣=1sinx]=ln(1sinx)ln(2+sinx)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com