All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36690 by prof Abdo imad last updated on 04/Jun/18
letf(t)=∫01ln(1−tx3)dxwith0<t⩽1 findasimpleformoff(t) 2)calculate∫01ln(2−x3)dx.
Commented bymaxmathsup by imad last updated on 03/Aug/18
wehavef′(t)=−∫01x31−tx3dx=−∫01x3(∑n=0∞tnx3ndx =−∑n=0∞tn∫01x3(n+1)dx=−∑n=0∞tn3n+4 =−1(3t)4∑n=0∞(3t)3n+43n+4=−1(3t)4φ(3t)with φ(x)=∑n=0∞x3n+43n+4⇒φ′(x)=∑n=0∞x3n+3=x3∑n=0∞(x3)n =x311−x3=x31−x3⇒φ(x)=∫0xt31−t3dt+cwithc=φ(0)=0⇒ φ(x)=−∫0xt3t3−1dt=−∫0xt3−1+1t3−1dt=−x−∫0xdtt3−1letdecompose F(t)=1t3−1 F(t)=1(t−1)(t2+t+1)=at−1+bt+ct2+t+1 a=limt→1(t−1)F(t)=13 limt→+∞tF(t)=0=a+b⇒b=−a⇒ F(t)=13(t−1)−13t−3ct2+t+1 F(0)=−1=−13+c⇒c=13−1=−23⇒F(t)=13(t−1)−13t+2t2+t+1⇒ ∫F(t)dt=13ln∣t−1∣−16∫2t+1+3t2+t+1dt =13ln∣t−1∣−16ln∣t2+t+1∣−12∫dt(t+12)2+34but ∫dt(t+12)2+34=t+12=32u∫134(1+u2)32du=4332arctan(2t+13) =233arctan(2t+13)⇒ φ(x)=−x−[13ln∣t−1∣−16ln(t2+t+1)−33arctan(2t+13)]0x =−x−{13ln∣x−1∣−16ln(x2+x+1)−33arctan(2x+13)+33arctan(13)} wehavef′(t)=−1(3t)4φ(3t)sothevalueoff′(x)isknown.. becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com