Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 36692 by math2018 last updated on 04/Jun/18

x^3 +y^3 =5  x^2 +y^2 =3

x3+y3=5x2+y2=3

Commented by behi83417@gmail.com last updated on 04/Jun/18

x+y=s,xy=t  (x+y)(x^2 −xy+y^2 )=5⇒s(3−t)=5  x^2 +y^2 =(x+y)^2 −2xy=s^2 −2t=3  ⇒ { ((3s−st=5)),((s^2 −2t=3)) :}⇒ { ((−6s+2st=−10)),((s^3 −2st=3s)) :}⇒  s^3 −9s+10=0⇒(s−2)(s^2 +2s−5)=0  ⇒s=2,−1±(√6)  1)s=2⇒6−2t=5⇒t=(1/2)  ⇒ { ((x+y=2)),((xy=(1/2))) :}⇒z^2 −2z+(1/2)=0⇒z=1±((√2)/2)  ⇒(x,y)=(1+((√2)/2),1−((√2)/2)),(1+((√2)/2),1−((√2)/2)).  2)s=−1+(√6)⇒t=3−(5/s)=3−(5/((√6)−1))=  =3−((√6)+1)=2−(√6)  ⇒ { ((x+y=(√6)−1)),((xy=2−(√6))) :}⇒z^2 −((√6)−1)z+(2−(√6))=0  ⇒z=((((√6)−1)±(√(((√6)−1)^2 −4(2−(√6)))))/2)=  =((((√6)−1)±(√(6+1−2(√6)−8+4(√6))))/2)⇒  ⇒ { ((x=(((√6)+(√(2(√6)−1))−1)/2))),((y=(((√6)−(√(2(√6)−1))−1)/2))) :}  3)s=−1−(√6)⇒t=3−(5/s)=3+(5/((√6)+1))=  =3+(√6)−1=2+(√6)  ⇒ { ((x+y=−1−(√6))),((xy=2+(√6))) :}⇒z^2 +((√6)+1)z+(2+(√6))=0  ⇒z=((−((√6)+1)±(√(((√6)+1)^2 −4(2+(√6)))))/2)=  =((−((√6)+1)±(√(−1−2(√6))))/2)  ⇒ { ((x=((−((√6)+1)+i(√(2(√6)+1)))/2))),((y=((−((√6)+1)−i(√(2(√6)+1)))/2))) :}   .■

x+y=s,xy=t(x+y)(x2xy+y2)=5s(3t)=5x2+y2=(x+y)22xy=s22t=3{3sst=5s22t=3{6s+2st=10s32st=3ss39s+10=0(s2)(s2+2s5)=0s=2,1±61)s=262t=5t=12{x+y=2xy=12z22z+12=0z=1±22(x,y)=(1+22,122),(1+22,122).2)s=1+6t=35s=3561==3(6+1)=26{x+y=61xy=26z2(61)z+(26)=0z=(61)±(61)24(26)2==(61)±6+1268+462{x=6+26112y=6261123)s=16t=35s=3+56+1==3+61=2+6{x+y=16xy=2+6z2+(6+1)z+(2+6)=0z=(6+1)±(6+1)24(2+6)2==(6+1)±1262{x=(6+1)+i26+12y=(6+1)i26+12.

Answered by Joel579 last updated on 04/Jun/18

a = x + y  b = xy    a^2  − 2b = 3  →  b = ((a^2  − 3)/2)    a(3 − b) = 5  a(((9 − a^2 )/2)) = 5  9a − a^3  = 10  a^3  − 9a + 10 = 0  (a − 2)(a^2  + 2a − 5) = 0    • a − 2 = 0 → a = 2  →  b = (1/2)      { ((x + y = 2)),((xy = (1/2))) :}    • a^2  + 2a − 5 = 0     a = −1 + (√6)  →  b = 2 − (√6)      { ((x + y = −1 + (√6))),((xy = 2 − (√6))) :}       a = −1 − (√6)  →  b = 2 + (√6)      { ((x + y = −1 − (√6))),((xy = 2 + (√6))) :}

a=x+yb=xya22b=3b=a232a(3b)=5a(9a22)=59aa3=10a39a+10=0(a2)(a2+2a5)=0a2=0a=2b=12{x+y=2xy=12a2+2a5=0a=1+6b=26{x+y=1+6xy=26a=16b=2+6{x+y=16xy=2+6

Commented by Joel579 last updated on 04/Jun/18

Now it′s easier to find (x,y)

Nowitseasiertofind(x,y)

Commented by math2018 last updated on 04/Jun/18

Thanks Sir

ThanksSir

Answered by MJS last updated on 04/Jun/18

looking for solutions of the form (because  I found no integer solutions and otherwise  we can′t exactly solve):  x=a(√b)+c(√d) ∧ y=a(√b)−c(√d) ⇒  ⇒ x=p(1+q) ∧ y=p(1−q)    (1) p^2 (1+q)^2 +p^2 (1−q)^2 =3  (2) p^3 (1+q)^3 +p^3 (1−q)^3 =5    (1) p^2 (2q^2 +2)=3 ⇒ q^2 =(3/(2p^2 ))−1  (2) p^3 (6q^2 +2)=5 ⇒ q^2 =(5/(6p^3 ))−(1/3)    (3/(2p^2 ))−1=(5/(6p^3 ))−(1/3) ⇒ p^3 −(9/4)p+(5/4)=0 ⇒   ⇒ (p−1)(p^2 +p−(5/4))=0  p_1 =1 ⇒ q_1 =±((√2)/2)  p_2 =−(1/2)−((√6)/2) ⇒ q_2 =±((√(−17+12(√6)))/5)i  p_3 =−(1/2)+((√6)/2) ⇒ q_3 =±((√(17+12(√6)))/5)    x_1 =1±((√2)/2); y_1 =1∓((√2)/2)  x_2 =−(1/2)−((√6)/2)±((√(1+2(√6)))/2)i;       y_2 =−(1/2)−((√6)/2)∓((√(1+2(√6)))/2)i  x_3 =−(1/2)+(√6)±((√(−1+2(√6)))/2);       y_3 =−(1/2)+(√6)∓((√(−1+2(√6)))/2)

lookingforsolutionsoftheform(becauseIfoundnointegersolutionsandotherwisewecantexactlysolve):x=ab+cdy=abcdx=p(1+q)y=p(1q)(1)p2(1+q)2+p2(1q)2=3(2)p3(1+q)3+p3(1q)3=5(1)p2(2q2+2)=3q2=32p21(2)p3(6q2+2)=5q2=56p31332p21=56p313p394p+54=0(p1)(p2+p54)=0p1=1q1=±22p2=1262q2=±17+1265ip3=12+62q3=±17+1265x1=1±22;y1=122x2=1262±1+262i;y2=12621+262ix3=12+6±1+262;y3=12+61+262

Commented by math2018 last updated on 04/Jun/18

Thanks for your work.

Thanksforyourwork.

Commented by MJS last updated on 04/Jun/18

you′re welcome

yourewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com