Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 36703 by saikiran last updated on 04/Jun/18

show that f(x)=sin X is derivable at every aεR

$${show}\:{that}\:{f}\left({x}\right)=\mathrm{sin}\:{X}\:{is}\:{derivable}\:{at}\:{every}\:{a}\varepsilon{R} \\ $$

Commented by abdo mathsup 649 cc last updated on 04/Jun/18

we have for all x ∈R  lim_(h→0)  ((f(x+h)−f(x))/h) =lim_(h→0) ((sin(x+h)−sinx)/h)  =lim_(h→0)  ((sinx cosh +cosx sinh −sinx)/h)  =lim_(h→0)  (( −sinx(1−cosh))/h) +((sinh)/h) cosx but  we know that lim_(h→0)  ((1−cosh)/h^2 ) =(1/2) ⇒  lim_(h→0)  ((1−cosh)/h) =0 also lim_(h→0) ((sinh)/h) =1 so  lim_(h→0)   ((f(x+h)−f(x))/h) = cosx  (∈R) so f is  derivablabe at every point of R .

$${we}\:{have}\:{for}\:{all}\:{x}\:\in{R} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}\:={lim}_{{h}\rightarrow\mathrm{0}} \frac{{sin}\left({x}+{h}\right)−{sinx}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\frac{{sinx}\:{cosh}\:+{cosx}\:{sinh}\:−{sinx}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\:−{sinx}\left(\mathrm{1}−{cosh}\right)}{{h}}\:+\frac{{sinh}}{{h}}\:{cosx}\:{but} \\ $$$${we}\:{know}\:{that}\:{lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}−{cosh}}{{h}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}−{cosh}}{{h}}\:=\mathrm{0}\:{also}\:{lim}_{{h}\rightarrow\mathrm{0}} \frac{{sinh}}{{h}}\:=\mathrm{1}\:{so} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}\:=\:{cosx}\:\:\left(\in{R}\right)\:{so}\:{f}\:{is} \\ $$$${derivablabe}\:{at}\:{every}\:{point}\:{of}\:{R}\:. \\ $$

Commented by MJS last updated on 04/Jun/18

to show  lim_(h→0) ((sin(x+h)−sin(x−h))/(2h))=cos x  we can use sin==((e^(ix) −e^(−ix) )/(2i)); cos x=((e^(ix) +e^(−ix) )/2)  lim_(h→0) ((e^(i(x+h)) −e^(−i(x+h)) −e^(i(x−h)) +e^(−i(x−h)) )/(4hi))=  =lim_(h→0) (((d/dh)(e^(i(x+h)) −e^(−i(x+h)) −e^(i(x−h)) +e^(−i(x−h)) ))/((d/dh)(4hi)))=  =lim_(h→0) (i/(4i))(e^(i(x+h)) +e^(−i(x+h)) +e^(i(x−h)) +e^(−i(x−h)) )=  =(1/4)(2e^(ix) +2e^(−ix) )=((e^(ix) +e^(−ix) )/2)=cos x

$$\mathrm{to}\:\mathrm{show} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}+{h}\right)−\mathrm{sin}\left({x}−{h}\right)}{\mathrm{2}{h}}=\mathrm{cos}\:{x} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{sin}==\frac{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2i}};\:\mathrm{cos}\:{x}=\frac{\mathrm{e}^{\mathrm{i}{x}} +\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2}} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{−\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{\mathrm{i}\left({x}−{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}−{h}\right)} }{\mathrm{4}{h}\mathrm{i}}= \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{d}}{{dh}}\left(\mathrm{e}^{\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{−\mathrm{i}\left({x}+{h}\right)} −\mathrm{e}^{\mathrm{i}\left({x}−{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}−{h}\right)} \right)}{\frac{{d}}{{dh}}\left(\mathrm{4}{h}\mathrm{i}\right)}= \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{i}}{\mathrm{4i}}\left(\mathrm{e}^{\mathrm{i}\left({x}+{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}+{h}\right)} +\mathrm{e}^{\mathrm{i}\left({x}−{h}\right)} +\mathrm{e}^{−\mathrm{i}\left({x}−{h}\right)} \right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2e}^{\mathrm{i}{x}} +\mathrm{2e}^{−\mathrm{i}{x}} \right)=\frac{\mathrm{e}^{\mathrm{i}{x}} +\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2}}=\mathrm{cos}\:{x} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18

1)meaning of derivative is the ability to draw  tangent at a point on a curve.  2)sinx is a continuous curve at every point  and tangent can be drawn at everyoint.so it  is derivable

$$\left.\mathrm{1}\right){meaning}\:{of}\:{derivative}\:{is}\:{the}\:{ability}\:{to}\:{draw} \\ $$$${tangent}\:{at}\:{a}\:{point}\:{on}\:{a}\:{curve}. \\ $$$$\left.\mathrm{2}\right){sinx}\:{is}\:{a}\:{continuous}\:{curve}\:{at}\:{every}\:{point} \\ $$$${and}\:{tangent}\:{can}\:{be}\:{drawn}\:{at}\:{everyoint}.{so}\:{it} \\ $$$${is}\:{derivable} \\ $$$$ \\ $$

Answered by MJS last updated on 04/Jun/18

f(x)=sin x  f′(x)=cos x  tangent in P= ((p),((sin p)) ):  y=xcos p+sin p −pcos p  exists for all p∈R

$${f}\left({x}\right)=\mathrm{sin}\:{x} \\ $$$${f}'\left({x}\right)=\mathrm{cos}\:{x} \\ $$$$\mathrm{tangent}\:\mathrm{in}\:{P}=\begin{pmatrix}{{p}}\\{\mathrm{sin}\:{p}}\end{pmatrix}: \\ $$$${y}={x}\mathrm{cos}\:{p}+\mathrm{sin}\:{p}\:−{p}\mathrm{cos}\:{p} \\ $$$$\mathrm{exists}\:\mathrm{for}\:\mathrm{all}\:{p}\in\mathbb{R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com