Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36736 by abdo mathsup 649 cc last updated on 04/Jun/18

let  f(θ) = ∫_0 ^1  ln(1−e^(iθ) x)dx  find a simple form of f(θ)

$${let}\:\:{f}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{e}^{{i}\theta} {x}\right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left(\theta\right) \\ $$

Commented by prof Abdo imad last updated on 06/Jun/18

for that let find ϕ(z) =∫_0 ^1 ln(1−zx)dx if  ∣z∣=1 we have ∣zx∣≤1  and  ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒  ln(1−u)=−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n) ⇒  ϕ(z) =−∫_0 ^1  {Σ_(n=1) ^∞  ((z^n x^n )/n)}dx  =−Σ_(n=1) ^∞  (z^n /n) ∫_0 ^1  x^n  dx  =−Σ_(n=1) ^∞   (z^n /(n(n+1))) =−Σ_(n=1) ^∞ ( (1/n) −(1/(n+1)))z^n   =−Σ_(n=1) ^∞  (z^n /n) +Σ_(n=1) ^∞    (z^n /(n+1))  but  −Σ_(n=1) ^∞  (z^n /n) =ln(1−z) and  Σ_(n=1) ^∞   (z^n /(n+1)) = Σ_(n=2) ^∞   (z^(n−1) /n) =(1/z) Σ_(n=2) ^∞  (z^n /n)  = (1/z){ Σ_(n=1) ^∞  (z^n /n) −z}  =(1/z){−ln(1−z) −z}  =−((ln(1−z))/z) −1 ⇒  ϕ(z)= ln(1−z) −((ln(1−z))/z) −1  f(θ) =ϕ(e^(iθ) ) = (1−(1/e^(iθ) ))ln(1−e^(iθ) ) −1  =(1−e^(−iθ) ) ln(1−e^(iθ) ) −1 .

$${for}\:{that}\:{let}\:{find}\:\varphi\left({z}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{zx}\right){dx}\:{if} \\ $$$$\mid{z}\mid=\mathrm{1}\:{we}\:{have}\:\mid{zx}\mid\leqslant\mathrm{1}\:\:{and} \\ $$$${ln}^{'} \left(\mathrm{1}−{u}\right)=\frac{−\mathrm{1}}{\mathrm{1}−{u}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}} \:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{u}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\Rightarrow \\ $$$$\varphi\left({z}\right)\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\left\{\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{n}} {x}^{{n}} }{{n}}\right\}{dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{n}} }{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{z}^{{n}} }{{n}\left({n}+\mathrm{1}\right)}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \left(\:\frac{\mathrm{1}}{{n}}\:−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right){z}^{{n}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{n}} }{{n}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{z}^{{n}} }{{n}+\mathrm{1}}\:\:{but} \\ $$$$−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{n}} }{{n}}\:={ln}\left(\mathrm{1}−{z}\right)\:{and} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{z}^{{n}} }{{n}+\mathrm{1}}\:=\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{{z}^{{n}−\mathrm{1}} }{{n}}\:=\frac{\mathrm{1}}{{z}}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{z}^{{n}} }{{n}} \\ $$$$=\:\frac{\mathrm{1}}{{z}}\left\{\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{n}} }{{n}}\:−{z}\right\} \\ $$$$=\frac{\mathrm{1}}{{z}}\left\{−{ln}\left(\mathrm{1}−{z}\right)\:−{z}\right\} \\ $$$$=−\frac{{ln}\left(\mathrm{1}−{z}\right)}{{z}}\:−\mathrm{1}\:\Rightarrow \\ $$$$\varphi\left({z}\right)=\:{ln}\left(\mathrm{1}−{z}\right)\:−\frac{{ln}\left(\mathrm{1}−{z}\right)}{{z}}\:−\mathrm{1} \\ $$$${f}\left(\theta\right)\:=\varphi\left({e}^{{i}\theta} \right)\:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{{e}^{{i}\theta} }\right){ln}\left(\mathrm{1}−{e}^{{i}\theta} \right)\:−\mathrm{1} \\ $$$$=\left(\mathrm{1}−{e}^{−{i}\theta} \right)\:{ln}\left(\mathrm{1}−{e}^{{i}\theta} \right)\:−\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com