Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36737 by abdo mathsup 649 cc last updated on 04/Jun/18

let g(θ) =∫_0 ^1 ln( 1−e^(iθ) x^2 )dx  find a simple form of g(θ) .θ from R.

letg(θ)=01ln(1eiθx2)dxfindasimpleformofg(θ).θfromR.

Commented by math khazana by abdo last updated on 05/Aug/18

we have proved that for ∣z∣=1  ∫_0 ^1 ln(1−zx)dx =(1−(1/z))ln(1−z)−1 but  g(θ) =∫_0 ^1 ln(1−(e^(i(θ/2)) x)^2 )dx  =∫_0 ^1 ln(1−e^((iθ)/2) x)dx +∫_0 ^1 ln(1 +e^((iθ)/2) x)dx but  ∫_0 ^1 ln(1−e^((iθ)/2) x)dx=(1−e^(−((iθ)/2)) )ln(1−e^((iθ)/2) )−1 let  find f(z) =∫_0 ^1 ln(1+zx)dx we have for ∣u∣<1  ln^′ (1+u) =(1/(1+u))=Σ_(n=0) ^∞ (−1)^n u^n  ⇒  ln(1+u) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))u^(n+1)  =Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n)  ⇒ln(1+zx) =Σ_(n=1) ^∞  (−1)^(n−1)  ((z^n  x^n )/n) ⇒  f(z) =Σ_(n=1) ^∞ (−1)^(n−1) (z^n /n) ∫_0 ^1  x^n dx  =Σ_(n=1) ^∞  (−1)^(n−1) (z^n /(n(n+1)))  =Σ_(n=1) ^∞  (−1)^(n−1) ((1/n)−(1/(n+1)))z^n   =Σ_(n=1) ^∞  (−1)^(n−1)  (z^n /n) −Σ_(n=1) ^∞ (−1)^(n−1)  (z^n /(n+1))  =ln(1+z) −Σ_(n=2) ^∞  (−1)^(n−2)  (z^(n−1) /n)  =ln(1+z) +(1/z)Σ_(n=2) ^∞  (−1)^(n−1)  (z^n /n)  =ln(1+z) +(1/z){Σ_(n=1) ^∞  (−1)^(n−1)  (z^n /n) −z}  =ln(1+z) +(1/z)ln(1+z)−1  =(1+(1/z))ln(1+z)−1⇒  ∫_0 ^1 ln(1+e^((iθ)/2) x)dx =(1+e^(−((iθ)/2)) )ln(1+e^((iθ)/2) )−1⇒  g(θ) =(1−e^((iπ)/2) )ln(1−e^((iθ)/2) ) +(1+e^(−((iθ)/2)) )ln(1+e^(−((iθ)/2)) )−2

wehaveprovedthatforz∣=101ln(1zx)dx=(11z)ln(1z)1butg(θ)=01ln(1(eiθ2x)2)dx=01ln(1eiθ2x)dx+01ln(1+eiθ2x)dxbut01ln(1eiθ2x)dx=(1eiθ2)ln(1eiθ2)1letfindf(z)=01ln(1+zx)dxwehaveforu∣<1ln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nn+1un+1=n=1(1)n1unnln(1+zx)=n=1(1)n1znxnnf(z)=n=1(1)n1znn01xndx=n=1(1)n1znn(n+1)=n=1(1)n1(1n1n+1)zn=n=1(1)n1znnn=1(1)n1znn+1=ln(1+z)n=2(1)n2zn1n=ln(1+z)+1zn=2(1)n1znn=ln(1+z)+1z{n=1(1)n1znnz}=ln(1+z)+1zln(1+z)1=(1+1z)ln(1+z)101ln(1+eiθ2x)dx=(1+eiθ2)ln(1+eiθ2)1g(θ)=(1eiπ2)ln(1eiθ2)+(1+eiθ2)ln(1+eiθ2)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com