All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36737 by abdo mathsup 649 cc last updated on 04/Jun/18
letg(θ)=∫01ln(1−eiθx2)dxfindasimpleformofg(θ).θfromR.
Commented by math khazana by abdo last updated on 05/Aug/18
wehaveprovedthatfor∣z∣=1∫01ln(1−zx)dx=(1−1z)ln(1−z)−1butg(θ)=∫01ln(1−(eiθ2x)2)dx=∫01ln(1−eiθ2x)dx+∫01ln(1+eiθ2x)dxbut∫01ln(1−eiθ2x)dx=(1−e−iθ2)ln(1−eiθ2)−1letfindf(z)=∫01ln(1+zx)dxwehavefor∣u∣<1ln′(1+u)=11+u=∑n=0∞(−1)nun⇒ln(1+u)=∑n=0∞(−1)nn+1un+1=∑n=1∞(−1)n−1unn⇒ln(1+zx)=∑n=1∞(−1)n−1znxnn⇒f(z)=∑n=1∞(−1)n−1znn∫01xndx=∑n=1∞(−1)n−1znn(n+1)=∑n=1∞(−1)n−1(1n−1n+1)zn=∑n=1∞(−1)n−1znn−∑n=1∞(−1)n−1znn+1=ln(1+z)−∑n=2∞(−1)n−2zn−1n=ln(1+z)+1z∑n=2∞(−1)n−1znn=ln(1+z)+1z{∑n=1∞(−1)n−1znn−z}=ln(1+z)+1zln(1+z)−1=(1+1z)ln(1+z)−1⇒∫01ln(1+eiθ2x)dx=(1+e−iθ2)ln(1+eiθ2)−1⇒g(θ)=(1−eiπ2)ln(1−eiθ2)+(1+e−iθ2)ln(1+e−iθ2)−2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com