Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36738 by MJS last updated on 04/Jun/18

(1)     ∫(dα/((1+sin 2α)^2 ))=  (2)     ∫(dβ/((1+cos 2β)^2 ))=  (3)     ∫(dγ/((1+sin 2γ)(1+cos 2γ)))=

(1)dα(1+sin2α)2=(2)dβ(1+cos2β)2=(3)dγ(1+sin2γ)(1+cos2γ)=

Commented by behi83417@gmail.com last updated on 05/Jun/18

sin2α=((e^(2α) −e^(−2α) )/(2i))=((e^(4α) −1)/(2ie^(2α) ))=((x^4 −1)/(2ix^2 ))  ⇒I=∫(dx/((1+((x^4 −1)/(2ix^2 )))^2 ))=∫((−4x^4 dx)/((x^4 +2ix^2 −1)^2 ))=  =∫((−4x^4 dx)/((x^2 +i)^4 ))=−4∫(dx/((x+(i/x))^4 ))=....

sin2α=e2αe2α2i=e4α12ie2α=x412ix2I=dx(1+x412ix2)2=4x4dx(x4+2ix21)2==4x4dx(x2+i)4=4dx(x+ix)4=....

Commented by abdo.msup.com last updated on 05/Jun/18

1) I = ∫   (dx/((1+sin(2x))^2 ))  =_(2x=t)    ∫    (1/(( 1+sint)^2 )) (dt/2)  2I =_(tan((t/2))=u )  ∫    (1/((1+ ((2u)/(1+u^2 )))^2 ))  ((2du)/(1+u^2 ))  = 2∫    (((1+u^2 )^2 )/((1+u^2  +2u)^2 )) (du/(1+u^2 ))  = 2 ∫     ((1+u^2 )/((u+1)^4 ))du let decompose   =_(u+1 =x)  2 ∫    ((1+(x−1)^2 )/x^4 )dx  =2 ∫   ((1+x^2  −2x+1)/x^4 )dx  I = ∫ ( (2/x^4 ) + (1/x^2 ) −(2/x^3 ))dx  =2.(1/(−4+1))x^(−4+1)   −(1/x) −2 (1/(−3+1))x^(−3+1)  +c  =((−2)/(3x^3 )) −(1/x)  +(1/x^2 ) +c  = ((−2)/(3(u+1)^3 )) −(1/(u+1)) + (1/((u+1)^2 )) +c  = ((−2)/(3( 1+tanx)^3 )) −(1/(1+tanx)) +(1/((1+tanx)^2 )) +c

1)I=dx(1+sin(2x))2=2x=t1(1+sint)2dt22I=tan(t2)=u1(1+2u1+u2)22du1+u2=2(1+u2)2(1+u2+2u)2du1+u2=21+u2(u+1)4duletdecompose=u+1=x21+(x1)2x4dx=21+x22x+1x4dxI=(2x4+1x22x3)dx=2.14+1x4+11x213+1x3+1+c=23x31x+1x2+c=23(u+1)31u+1+1(u+1)2+c=23(1+tanx)311+tanx+1(1+tanx)2+c

Commented by abdo.msup.com last updated on 05/Jun/18

3) let I = ∫      (dx/((1+sin(2x))(1+cos(2x))))  I =_(2x=t )  ∫       (1/((1+sint)(1+cost))) (dt/2)  2I =_(tan((t/2))=u)     ∫    (1/((1+((2u)/(1+u^2 )))(1+((1−u^2 )/(1+u^2 ))))) ((2du)/(1+u^2 ))  = ∫      ((2du)/((1+u^2 )( ((1+u^2  +2u)/(1+u^2 )))( ((1+u^2  +1−u^2 )/(1+u^2 )))))  I = ∫     ((1+u^2 )/(2(u+1)^2 )) du  2I =_(u+1 =x)    ∫   ((1+(x−1)^2 )/x^2 )dx  = ∫ ((1+x^2  −2x +1)/x^2 )dx  = ∫  ( (2/x^2 )  +1  −(2/x))dx  =−(2/x) +x −2ln∣x∣ +c  =−(2/(u+1)) +u+1 −2ln∣u+1∣ +c  = −(2/(1+tan(x)))  + 1+tan(x) −2ln∣1+tanx∣ +c  I = ((−1)/(1+tanx)) +(1/2)tanx −ln∣1+tanx∣ +λ

3)letI=dx(1+sin(2x))(1+cos(2x))I=2x=t1(1+sint)(1+cost)dt22I=tan(t2)=u1(1+2u1+u2)(1+1u21+u2)2du1+u2=2du(1+u2)(1+u2+2u1+u2)(1+u2+1u21+u2)I=1+u22(u+1)2du2I=u+1=x1+(x1)2x2dx=1+x22x+1x2dx=(2x2+12x)dx=2x+x2lnx+c=2u+1+u+12lnu+1+c=21+tan(x)+1+tan(x)2ln1+tanx+cI=11+tanx+12tanxln1+tanx+λ

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18

3)t=tanγ   dt=sec^2 γdγ  (dt/(1+t^2 ))=dγ  ∫(dt/(1+t^2 ))×(1/((1+((2t)/(1+t^2 )))(1+((1−t^2 )/(1+t^2 )))))  ∫((1+t^2  dt)/((1+t^2 +2t)(2)))  =(1/2)∫((1+t^2 )/(1+t^2 +2t))  =(1/2)∫((1+t^2 +2t−2t)/(1+t^2 +2t))dt  =(1/2)∫dt−(1/2)∫((2t+2−2)/(1+t^2 +2t))  =(1/2)∫dt−(1/2)∫((d(1+t^2 +2t))/(1+t^2 +2t))+∫(dt/((1+t)^2 ))  =(1/2)t−(1/2)ln(1+t^2 +2t)+(((1+t)^(−1) )/(−1))+c  =(1/2)tanγ−(1/2)×2ln(1+t)−(1/(1+t))+c  =(1/2)tanγ−ln(1+tanγ)−(1/(1+tanγ))+c

3)t=tanγdt=sec2γdγdt1+t2=dγdt1+t2×1(1+2t1+t2)(1+1t21+t2)1+t2dt(1+t2+2t)(2)=121+t21+t2+2t=121+t2+2t2t1+t2+2tdt=12dt122t+221+t2+2t=12dt12d(1+t2+2t)1+t2+2t+dt(1+t)2=12t12ln(1+t2+2t)+(1+t)11+c=12tanγ12×2ln(1+t)11+t+c=12tanγln(1+tanγ)11+tanγ+c

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18

1)tanα=t  dt=sec^2 αdα  dα=(dt/(1+t^2 ))  ∫(dt/(1+t^2 ))×(((1+t^2 )^2 )/((1+t^2 +2t)^2 ))  ∫(((1+t^2 )dt)/((1+t^2 +2t)^2 ))  ∫((1+t^2 +2t−2t−2+2)/((1+t^2 +2t)^2 ))dt  ∫(dt/(1+t^2 +2t))−∫((d(t^2 +2t+1))/((1+t^2 +2t)^2 ))+2∫(dt/((1+t)^4 ))  ∫(dt/((1+t)^2 ))−∫((d(t^2 +2t+1))/((1+t^2 +2t)^2 ))+2∫(dt/((1+t)^4 ))  =(((1+t)^(−1) )/(−1))−(((1+2t+t^2 )^(−1) )/(−1))+2(((1+t)^(−3) )/(−3))+c  =((−1)/((1+tanα)))+(1/((1+2tanα+tan^2 α)))−(2/(3(1+tanα)^3 ))

1)tanα=tdt=sec2αdαdα=dt1+t2dt1+t2×(1+t2)2(1+t2+2t)2(1+t2)dt(1+t2+2t)21+t2+2t2t2+2(1+t2+2t)2dtdt1+t2+2td(t2+2t+1)(1+t2+2t)2+2dt(1+t)4dt(1+t)2d(t2+2t+1)(1+t2+2t)2+2dt(1+t)4=(1+t)11(1+2t+t2)11+2(1+t)33+c=1(1+tanα)+1(1+2tanα+tan2α)23(1+tanα)3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com