All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36747 by prof Abdo imad last updated on 05/Jun/18
letf(x)=∑n=1∞sin(nx)nxn1)provethatfisC1on]−1,1[2)calculatef′(x)andprovethatf(x)=arctan(xsinx1−xcosx)
Commented by prof Abdo imad last updated on 06/Jun/18
thefunctionfn(x)=sin(nx)nxnareC1on]−1,1[andfn′(x)=sin(nx)xn−1arecontinueson]−1,1[alsoΣfn′(x)convergesunif.on]−1,1[Σfn(x)conv.unif.fisC1on]−1,1[2)wehavef′(x)=∑n=1∞sin(nx)xn−1=Im(∑n=1∞einxxn−1)but∑n=1∞einxxn−1=∑n=0∞ei(n+1)xxn=eix∑n=0∞(xeix)n=eix11−xeix=1e−ix−x=1cosx−isinx−x=cosx−x+isin(x)(cosx−x)2+sin2x⇒f′(x)=sinx1−2xcosx+x2⇒f(x)=∫sinxx2−2xcosx+1dx+c....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com