All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36799 by abdo.msup.com last updated on 05/Jun/18
find∫0∞etln(1+e−2t)dt.
Commented by math khazana by abdo last updated on 11/Jun/18
letI=∫0∞etln(1+e−2t)dtbypartsu′=etandv=ln(1+e−2t)⇒I=[etln(1+e−2t)]0+∞−∫0∞et−2e−2t1+e−2tdt=−ln(2)+2∫0∞e−t1+e−2tdtbut∫0∞e−t1+e−2tdt=et=x∫1+∞1x(1+1x2)dxx=∫1+∞dxx2+1=[arctanx]1+∞=π2−π4=π4⇒★I=−ln(2)+π2★
Answered by MJS last updated on 06/Jun/18
∫etln(1+e−2t)dt=[∫f′g=fg−∫fg′f′=et⇒f=etg=ln(1+e−2t)⇒g′=−2e−2t1+e−2t]=etln(1+e−2t)−2∫−e−t1+e−2tdt=[u=−et→dt=−etdu]=etln(1+e−2t)−2∫u1+u2du==etln(1+e−2t)−2arctanu==etln(1+e−2t)−2arctan−et==etln(1+e−2t)+2arctanet+C∫∞0etln(1+e−2t)dt=π2−ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com