Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36801 by rahul 19 last updated on 05/Jun/18

∫ ((1+x^4 )/((1−x^4 )^(3/2) )) dx = A   ∫ A = B  Find B ?  Assume integration of constant=0.

1+x4(1x4)32dx=AA=BFindB?Assumeintegrationofconstant=0.

Answered by MJS last updated on 05/Jun/18

A=(x/(√(1−x^4 )))  B=(1/2)arcsin x^2     A:  ∫((1+x^4 )/((1−x^4 )^(3/2) ))dx  looks like it′s ((p(x))/(√(1−x^4 ))) with p(x) is a polynome  let′s try  (d/dx)(((p(x))/(√(1−x^4 ))))=(d/dx)(p(x)(1−x^4 )^(−(1/2)) )=  =p′(x)(1−x^4 )^(−(1/2)) +p(x)(2x^3 (1−x^4 )^(−(3/2)) )=  =((p′(x)(1−x^4 )+2p(x)x^3 )/((1−x^4 )^(3/2) ))  ⇒ p′(x)(1−x^4 )+2p(x)x^3 =1+x^4   let′s try p(x)=ax+b; p′(x)=a  a+2bx^3 +ax^4 =1+x^4   a=1; b=0  p(x)=x  ∫((1+x^4 )/((1−x^4 )^(3/2) ))dx=(x/(√(1−x^4 )))    B:  ∫(x/(√(1−x^4 )))dx=            [t=x^2  → dx=(dt/(2x))]  =(1/2)∫(dt/(√(1−t^2 )))=(1/2)arcsin t=  =(1/2)arcsin x^2

A=x1x4B=12arcsinx2A:1+x4(1x4)32dxlookslikeitsp(x)1x4withp(x)isapolynomeletstryddx(p(x)1x4)=ddx(p(x)(1x4)12)==p(x)(1x4)12+p(x)(2x3(1x4)32)==p(x)(1x4)+2p(x)x3(1x4)32p(x)(1x4)+2p(x)x3=1+x4letstryp(x)=ax+b;p(x)=aa+2bx3+ax4=1+x4a=1;b=0p(x)=x1+x4(1x4)32dx=x1x4B:x1x4dx=[t=x2dx=dt2x]=12dt1t2=12arcsint==12arcsinx2

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18

  ∫((1+x^4 )/((1−x^4 )(√(1−x^4 )) ))dx  x^2 =(1/t)  x=t^((−1)/2)   dx=((−1)/2)×(1/t^(3/2) )dt  =((−1)/2)∫(dt/t^(3/2) )×((1+(1/t^2 ))/(1−(1/t^2 )))×(1/(√(1−(1/t^2 ))))  =((−1)/2)∫(dt/t^(3/2) )×((t^2 +1)/(t^2 −1))×(t/(√(t^2 −1)))  =((−1)/2)∫((t^2 +1)/(t^2 −1))×(1/(√t))×(1/((√t) ((√(t−(1/t)))))dt  =((−1)/2)∫((1+(1/t^2 ))/(1−(1/t^2 )))×(1/t)×(dt/(√(t−(1/t))))  ((−1)/2)∫((1+(1/t^2 ))/(t−(1/t)))×(dt/(√(t−(1/t))))  =((−1)/2)∫(dk/k^(3/2) )      when(k=t−(1/t))  =((−1)/2)×(k^((−1)/2) /((−1)/2))+c  =(1/(√k))+c  =(1/(√(t−(1/t))))+c  =(1/(√((1/x^2 )−x^2 )))+c    so A=(1/(√((1/x^2 )−x^2 )))  ∫Adx=B  ∫(x/(√(1−x^4 )))dx   y=x^2   dy=2xdx  ∫(dy/(2×(√(1−y^2 ))))  =(1/2)sin^(−1) (y)  =(1/2)sin^(−1) (x^2 )  is B

1+x4(1x4)1x4dxx2=1tx=t12dx=12×1t32dt=12dtt32×1+1t211t2×111t2=12dtt32×t2+1t21×tt21=12t2+1t21×1t×1t(t1tdt=121+1t211t2×1t×dtt1t121+1t2t1t×dtt1t=12dkk32when(k=t1t)=12×k1212+c=1k+c=1t1t+c=11x2x2+csoA=11x2x2Adx=Bx1x4dxy=x2dy=2xdxdy2×1y2=12sin1(y)=12sin1(x2)isB

Terms of Service

Privacy Policy

Contact: info@tinkutara.com