All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36811 by rahul 19 last updated on 05/Jun/18
∫sinxcos2x.cos2xdx=?
Answered by MJS last updated on 05/Jun/18
∫sinxcos2xcos2xdx=∫sinxcos2xcos2x−sin2xdx==∫tanxsecx1sec2x1sec2x−tan2xsec2xdx==∫sec2xtanx1−tan2xdx=[t=tanx→dx=dtsec2x]=∫t1−t2dt=[u=1−t2→dt=−du2t]=−12∫duu=−u=−1−t2=−1−tan2x+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com