Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 36819 by maxmathsup by imad last updated on 06/Jun/18

find the value of the sum Σ_(n=1) ^∞    (1/((2n−1)^2 (2n+1)^2 ))

findthevalueofthesumn=11(2n1)2(2n+1)2

Commented by maxmathsup by imad last updated on 03/Aug/18

let S_n = Σ_(k=1) ^n     (1/((2k−1)^2 (2k+1)^2 ))  ⇒S=lim_(n→+∞)  S_n   let decompose  F(x)=(1/((2x−1)^2 (2x+1)^2 ))  F(x)= (a/(2x−1)) +(b/((2x−1)^2 )) +(c/(2x+1)) +(d/((2x+1)^2 ))  b =lim_(x→(1/2))    (2x−1)^2 F(x) = (1/4)  d=lim_(x→−(1/2))    (2x+1)^2 F(x)=(1/4)  ⇒F(x)=(a/(2x−1)) +(1/(4(2x−1)^2 )) +(c/((2x+1))) +(1/(4(2x+1)^2 ))  lim_(x→+∞)  xF(x)=0 =(a/2) +(c/2) ⇒c=−a ⇒  F(x)=(a/(2x−1)) −(a/(2x+1)) + (1/(4(2x−1)^2 )) +(1/(4(2x+1)^2 ))  F(0) =1 =−2a +(1/2) ⇒2a =−(1/2) ⇒a =−(1/4) ⇒  F(x)=(1/(4(2x+1))) −(1/(4(2x−1))) +(1/(4(2x−1)^2 )) +(1/(4(2x+1)^2 ))  S_n =Σ_(k=1) ^n  F(k) =(1/4){ Σ_(k=1) ^n  (1/(2k+1)) −Σ_(k=1) ^n  (1/(2k−1)) +Σ_(k=1) ^n  (1/((2k−1)^2 )) +Σ_(k=1) ^n  (1/((2k+1)^2 ))}but  Σ_(k=1) ^n ((1/(2k+1)) −(1/(2k−1))) =Σ_(k=1) ^n (u_n −u_(n−1) )     (u_n =(1/(2n+1)))  =u_n  −u_0 =(1/(2n+1)) −1   also   Σ_(k=1) ^n  (1/((2k−1)^2 )) =_(k=j+1)   Σ_(j=0) ^(n−1)   (1/((2j+1)^2 )) →Σ_(n=0) ^∞   (1/((2n+1)^2 ))  Σ_(k=1) ^n   (1/((2k+1)^2 )) =Σ_(k=0) ^n  (1/((2k+1)^2 )) −1 →Σ_(n=0) ^∞   (1/((2n+1)^2 )) −1  we have (π^2 /6) =Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(1/4) (π^2 /6) +Σ_(n=0) ^∞  (1/((2n+1)^2 ))  ⇒Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /6) −(π^2 /(24)) =((3π^2 )/(24)) =(π^2 /8) ⇒  lim_    S_n =(1/4){−1 +(π^2 /8) +(π^2 /8) −1} =(1/4){(π^2 /4) −2} =(π^2 /(16)) −(1/2)  S=(π^2 /(16)) −(1/2) .

letSn=k=1n1(2k1)2(2k+1)2S=limn+SnletdecomposeF(x)=1(2x1)2(2x+1)2F(x)=a2x1+b(2x1)2+c2x+1+d(2x+1)2b=limx12(2x1)2F(x)=14d=limx12(2x+1)2F(x)=14F(x)=a2x1+14(2x1)2+c(2x+1)+14(2x+1)2limx+xF(x)=0=a2+c2c=aF(x)=a2x1a2x+1+14(2x1)2+14(2x+1)2F(0)=1=2a+122a=12a=14F(x)=14(2x+1)14(2x1)+14(2x1)2+14(2x+1)2Sn=k=1nF(k)=14{k=1n12k+1k=1n12k1+k=1n1(2k1)2+k=1n1(2k+1)2}butk=1n(12k+112k1)=k=1n(unun1)(un=12n+1)=unu0=12n+11alsok=1n1(2k1)2=k=j+1j=0n11(2j+1)2n=01(2n+1)2k=1n1(2k+1)2=k=0n1(2k+1)21n=01(2n+1)21wehaveπ26=n=11n2=n=114n2+n=01(2n+1)2=14π26+n=01(2n+1)2n=01(2n+1)2=π26π224=3π224=π28limSn=14{1+π28+π281}=14{π242}=π21612S=π21612.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com