All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 36819 by maxmathsup by imad last updated on 06/Jun/18
findthevalueofthesum∑n=1∞1(2n−1)2(2n+1)2
Commented by maxmathsup by imad last updated on 03/Aug/18
letSn=∑k=1n1(2k−1)2(2k+1)2⇒S=limn→+∞SnletdecomposeF(x)=1(2x−1)2(2x+1)2F(x)=a2x−1+b(2x−1)2+c2x+1+d(2x+1)2b=limx→12(2x−1)2F(x)=14d=limx→−12(2x+1)2F(x)=14⇒F(x)=a2x−1+14(2x−1)2+c(2x+1)+14(2x+1)2limx→+∞xF(x)=0=a2+c2⇒c=−a⇒F(x)=a2x−1−a2x+1+14(2x−1)2+14(2x+1)2F(0)=1=−2a+12⇒2a=−12⇒a=−14⇒F(x)=14(2x+1)−14(2x−1)+14(2x−1)2+14(2x+1)2Sn=∑k=1nF(k)=14{∑k=1n12k+1−∑k=1n12k−1+∑k=1n1(2k−1)2+∑k=1n1(2k+1)2}but∑k=1n(12k+1−12k−1)=∑k=1n(un−un−1)(un=12n+1)=un−u0=12n+1−1also∑k=1n1(2k−1)2=k=j+1∑j=0n−11(2j+1)2→∑n=0∞1(2n+1)2∑k=1n1(2k+1)2=∑k=0n1(2k+1)2−1→∑n=0∞1(2n+1)2−1wehaveπ26=∑n=1∞1n2=∑n=1∞14n2+∑n=0∞1(2n+1)2=14π26+∑n=0∞1(2n+1)2⇒∑n=0∞1(2n+1)2=π26−π224=3π224=π28⇒limSn=14{−1+π28+π28−1}=14{π24−2}=π216−12S=π216−12.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com