Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 36820 by maxmathsup by imad last updated on 06/Jun/18

find the value of Σ_(n=2) ^∞   (1/((n−1)^2 (n+1)^2 ))

findthevalueofn=21(n1)2(n+1)2

Commented by math khazana by abdo last updated on 24/Jun/18

let S_n =Σ_(k=2S) ^n   (1/((n−1)^2 (n+1)^2 ))  we have S=lim_(n→+∞) S_n   let decompose F(x)= (1/((x−1)^2 (x+1)^2 ))  F(x)= (a/(x−1)) +(b/((x−1)^2 )) +(c/(x+1)) +(d/((x+1)^2 ))  b=lim_(x→1) (x−1)^2 F(x)=(1/4)  d=lim_(x→−1)  (x+1)^2 F(x)=(1/4) ⇒  F(x)= (a/(x−1)) +(1/(4(x−1)^2 )) +(c/(x+1)) +(1/(4(x+1)^2 ))  lim_(x→+∞) xF(x)=0=a+c ⇒c=−a ⇒  F(x)= (a/(x−1)) −(a/(x+1))  +(1/(4(x−1)^2 )) +(1/(4(x+1)^2 ))  F(0)=1=−2a  +(1/2) ⇒−2a=(1/2) ⇒a=−(1/4) ⇒  F(x)= (1/(4(x+1))) −(1/(4(x−1))) +(1/(4(x−1)^2 )) +(1/(4(x+1)^2 ))  4S_n = Σ_(k=2) ^n   (1/(k+1)) −Σ_(k=2) ^n  (1/(k−1)) +Σ_(k=2) ^n  (1/((k−1)^2 ))  +Σ_(k=2) ^n  (1/((k+1)^2 )) but  Σ_(k=2) ^n   (1/(k+1)) =Σ_(k=3) ^(n+1)    (1/k)= H_(n+1) −(3/2)  Σ_(k=2) ^n  (1/(k−1)) =Σ_(k=1) ^(n−1)  (1/k) =H_(n−1)   Σ_(k=2) ^n  (1/((k−1)^2 )) = Σ_(k=1) ^(n−1)  (1/k^2 ) =ξ_(n−1) (2)  Σ_(k=2) ^n   (1/((k+1)^2 )) =Σ_(k=3) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−(5/4) ⇒  4S_n = H_(n+1) −(3/2) −H_(n−1)   +ξ_(n−1) (2) +ξ_(n+1) (2)−(5/4)  4S_n =γ +ln(n+1) +o((1/n))−γ−ln(n−1)−o((1/n))  +ξ_(n−1) (2)+ξ_(n+1) (2) −((11)/4) ⇒  4 S_n  → ((2π^2 )/6) −((11)/4) =(π^2 /3) −((11)/4) ⇒  lim_(n→+∞)  S_n = (π^2 /(12)) −((11)/(16)) = S.

letSn=k=2Sn1(n1)2(n+1)2wehaveS=limn+SnletdecomposeF(x)=1(x1)2(x+1)2F(x)=ax1+b(x1)2+cx+1+d(x+1)2b=limx1(x1)2F(x)=14d=limx1(x+1)2F(x)=14F(x)=ax1+14(x1)2+cx+1+14(x+1)2limx+xF(x)=0=a+cc=aF(x)=ax1ax+1+14(x1)2+14(x+1)2F(0)=1=2a+122a=12a=14F(x)=14(x+1)14(x1)+14(x1)2+14(x+1)24Sn=k=2n1k+1k=2n1k1+k=2n1(k1)2+k=2n1(k+1)2butk=2n1k+1=k=3n+11k=Hn+132k=2n1k1=k=1n11k=Hn1k=2n1(k1)2=k=1n11k2=ξn1(2)k=2n1(k+1)2=k=3n+11k2=ξn+1(2)544Sn=Hn+132Hn1+ξn1(2)+ξn+1(2)544Sn=γ+ln(n+1)+o(1n)γln(n1)o(1n)+ξn1(2)+ξn+1(2)1144Sn2π26114=π23114limn+Sn=π2121116=S.

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18

T_n =(1/((n+1)^2 (n−1)^2 ))=(1/2)(((n+1)−(n−1))/((n+1)^2 (n−1)^2 ))  =(1/2)(1/((n+1)(n−1)^2 ))−(1/2)(1/((n+1)^2 (n−1)))  =(1/4)×(((n+1)−(n−1))/((n+1)(n−1)^2 ))−(1/4)×(((n+1)−(n−1))/((n+1)^2 (n−1)))    =(1/4)×(1/((n−1)^2 ))−(1/4)×(1/((n+1)(n−1)))−   (1/4)×(1/((n+1)(n−1)))+(1/4)×(1/((n+1)^2 ))  =(1/4)×(1/((n−1)^2 ))−(1/2)×(1/((n+1)(n−1)))+(1/4)×(1/((n+1)^2 ))  so  S_n =S_1 −S_2 +S_3       (n>1)  S_1 =(1/4)((1/1^2 )+(1/2^2 )+(1/3^2 )+.....)=(1/4)×(Π^2 /6)  S_2 =(1/4){(((n+1)−(n−1))/((n+1)(n−1)))}  =(1/4){(1/(n−1))−(1/(n+1))}  ={(1/4)((1/1)+(1/2)+(1/3)+...)−(1/4)((1/3)+(1/4)+(1/5)+(1/6)...)}  =(1/4)×(3/2)=(3/8)  S_3 =(1/4)×{(1/((n+1)^2 ))}  =(1/4)×((1/3^2 )+(1/4^2 )+(1/5^2 )+....)  =(1/4)×((Π^2 /6)−(1/1^2 )−(1/2^2 ))=(1/4)((Π^2 /6)−(5/4))  S_n =S_1 −S_2 +S_3   =(1/4)×(Π^2 /6)−(1/4)×(3/2)+(1/4)((Π^2 /6)−(5/4))  =(1/4)×{(Π^2 /6)−(3/2)+(Π^2 /6)−(5/4)}  =(1/4)×{((2Π^2 )/6)−((11)/4)}

Tn=1(n+1)2(n1)2=12(n+1)(n1)(n+1)2(n1)2=121(n+1)(n1)2121(n+1)2(n1)=14×(n+1)(n1)(n+1)(n1)214×(n+1)(n1)(n+1)2(n1)=14×1(n1)214×1(n+1)(n1)14×1(n+1)(n1)+14×1(n+1)2=14×1(n1)212×1(n+1)(n1)+14×1(n+1)2soSn=S1S2+S3(n>1)S1=14(112+122+132+.....)=14×26S2=14{(n+1)(n1)(n+1)(n1)}=14{1n11n+1}={14(11+12+13+...)14(13+14+15+16...)}=14×32=38S3=14×{1(n+1)2}=14×(132+142+152+....)=14×(26112122)=14(2654)Sn=S1S2+S3=14×2614×32+14(2654)=14×{2632+2654}=14×{226114}

Commented by math khazana by abdo last updated on 24/Jun/18

correct answer sir Tanmay...

correctanswersirTanmay...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com