Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 36837 by Rio Mike last updated on 06/Jun/18

Σ_(r=0) ^∞ 2^(4r−2)

r=024r2

Commented by prof Abdo imad last updated on 06/Jun/18

let S_n =Σ_(k=0) ^n  2^(4k −2) ⇒S_n =(1/4) Σ_(k=0) ^n  (2^4 )^k   =(1/4) (((2^4 )^(n+1)  −1)/(2^4  −1)) = (1/(4(2^4 −1))){ 2^(4n+4)  −1} but  2>1 ⇒ lim_(n→+∞) 2^(4n+4)  =+∞ ⇒lim_(n→+∞) S_n =+∞

letSn=k=0n24k2Sn=14k=0n(24)k=14(24)n+11241=14(241){24n+41}but2>1limn+24n+4=+limn+Sn=+

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18

s=2^(4.0−2) +2^(4.1−2) +2^(4.2−2) +2^(4.3−2) +...  =2^(−2) +2^2 +2^6 +2^(10) +..  =((2^(−2) {(2^2 )^n −1})/(2^2 −1))  =((2^(−2) (2^(2n) −1))/3)=((2^(2n) −1)/(12))  since common ratio is 2^2   i,e 4>1  so s→∞

s=24.02+24.12+24.22+24.32+...=22+22+26+210+..=22{(22)n1}221=22(22n1)3=22n112sincecommonratiois22i,e4>1sos

Terms of Service

Privacy Policy

Contact: info@tinkutara.com