Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 36904 by prof Abdo imad last updated on 07/Jun/18

1)decompose inside C[x]  p(x)=x^(2n)  −2(cosα)x^n  +1  2) decopose p(x)inside R[x]

$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left[{x}\right] \\ $$$${p}\left({x}\right)={x}^{\mathrm{2}{n}} \:−\mathrm{2}\left({cos}\alpha\right){x}^{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{decopose}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$

Commented by math khazana by abdo last updated on 11/Jun/18

1) let put  x^n  =t ⇒p(x)=t^2  −2cos(α)t +1  Δ^′  =cos^2 −1 =(isinα)^2  ⇒t_1 = e^(iα)  and t_2 =e^(−iα)   p(x)=(t−e^(iα) )(t−e^(−iα) ) = (x^n  −e^(iα) )(x^n −e^(−iα) )roots  of z^n  −e^(iα)    =0 ⇒ z^n  =e^(iα)  ⇒ r=1 and  nθ = α +2kπ ⇒ θ =((α +2kπ)/n)  k∈[[0,n−1]]so  the roots are z_k =e^(i ((α+2kπ)/n))   roots of   x^n  −e^(−iα) =0 ⇒x^n  =e^(−iα)  ⇒r=1  and nθ =−α +2kπ ⇒ θ_k =((−α +2kπ)/n) ⇒  the roots are  λ_k  = e^(i((−α+2kπ)/n))   and k∈[[0,n−1]]  ⇒p(x) =Π_(k=0) ^(n−1)  (x−z_k )Π_(k=0) ^(n−1) (x−λ_k )  =Π_(k=0) ^(n−1) (x −e^(i((α+2kπ)/n)) )(x− e^(i((−α +2kπ)/n)) ) with  k∈[[0,n−1]].

$$\left.\mathrm{1}\right)\:{let}\:{put}\:\:{x}^{{n}} \:={t}\:\Rightarrow{p}\left({x}\right)={t}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\alpha\right){t}\:+\mathrm{1} \\ $$$$\Delta^{'} \:={cos}^{\mathrm{2}} −\mathrm{1}\:=\left({isin}\alpha\right)^{\mathrm{2}} \:\Rightarrow{t}_{\mathrm{1}} =\:{e}^{{i}\alpha} \:{and}\:{t}_{\mathrm{2}} ={e}^{−{i}\alpha} \\ $$$${p}\left({x}\right)=\left({t}−{e}^{{i}\alpha} \right)\left({t}−{e}^{−{i}\alpha} \right)\:=\:\left({x}^{{n}} \:−{e}^{{i}\alpha} \right)\left({x}^{{n}} −{e}^{−{i}\alpha} \right){roots} \\ $$$${of}\:{z}^{{n}} \:−{e}^{{i}\alpha} \:\:\:=\mathrm{0}\:\Rightarrow\:{z}^{{n}} \:={e}^{{i}\alpha} \:\Rightarrow\:{r}=\mathrm{1}\:{and} \\ $$$${n}\theta\:=\:\alpha\:+\mathrm{2}{k}\pi\:\Rightarrow\:\theta\:=\frac{\alpha\:+\mathrm{2}{k}\pi}{{n}}\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]{so} \\ $$$${the}\:{roots}\:{are}\:{z}_{{k}} ={e}^{{i}\:\frac{\alpha+\mathrm{2}{k}\pi}{{n}}} \\ $$$${roots}\:{of}\:\:\:{x}^{{n}} \:−{e}^{−{i}\alpha} =\mathrm{0}\:\Rightarrow{x}^{{n}} \:={e}^{−{i}\alpha} \:\Rightarrow{r}=\mathrm{1} \\ $$$${and}\:{n}\theta\:=−\alpha\:+\mathrm{2}{k}\pi\:\Rightarrow\:\theta_{{k}} =\frac{−\alpha\:+\mathrm{2}{k}\pi}{{n}}\:\Rightarrow \\ $$$${the}\:{roots}\:{are}\:\:\lambda_{{k}} \:=\:{e}^{{i}\frac{−\alpha+\mathrm{2}{k}\pi}{{n}}} \:\:{and}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$$\Rightarrow{p}\left({x}\right)\:=\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({x}−{z}_{{k}} \right)\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−\lambda_{{k}} \right) \\ $$$$=\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}\:−{e}^{{i}\frac{\alpha+\mathrm{2}{k}\pi}{{n}}} \right)\left({x}−\:{e}^{{i}\frac{−\alpha\:+\mathrm{2}{k}\pi}{{n}}} \right)\:{with} \\ $$$${k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com