Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36936 by maxmathsup by imad last updated on 07/Jun/18

calculate I_n  = ∫_0 ^π    (dx/(1+cos^2 (nx)))

$${calculate}\:{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} \left({nx}\right)} \\ $$

Commented by math khazana by abdo last updated on 02/Aug/18

we have I_n = ∫_0 ^π      (dx/(1+((1+cos(2nx))/2)))  = ∫_0 ^π      ((2dx)/(3+cos(2nx))) =_(2nx=t)    ∫_0 ^(2nπ)      (2/(3+cost)) (dt/(2n))  =(1/n) ∫_0 ^(2nπ)      (dt/(3+cost)) ⇒nI_n  =Σ_(k=0) ^(n−1)  ∫_(2kπ) ^(2(k+1)π)   (dt/(3+cost))  =_(t=2kπ +x)  Σ_(k=0) ^(n−1)   ∫_0 ^(2π)      (dx/(3 +cos(x+2kπ)))  =n  ∫_0 ^(2π)      (dx/(3+cosx)) ⇒ I_n =∫_0 ^(2π)    (dx/(3+cosx)) ∀ n≥1and  I_o = π changement e^(ix)   =z give  I_n = ∫_(∣z∣=1)     (1/(3 +((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)   ((2dz)/(iz{ 6 +z+z^(−1) })) =∫_(∣z∣=1)  ((−2idz)/(6z+z^2  +1))  let ϕ(z) = ((−2i)/(z^2  +6z +1)) poles of ϕ?  Δ^′ =3^2 −1=8 ⇒z_1 =−3+2(√2)  and z_2 =−3−2(√2)  ∣z_1 ∣−1 =3−2(√2)−1=2−2(√2)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1=3+2(√2)−1=2+2(√2)>1 ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 ) but  ϕ(z) =((−2i)/((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_1 )=((−2i)/(z_1 −z_2 ))  =((−2i)/(4(√2))) =((−i)/(2(√2))) ⇒ ∫_(∣z∣=1) ϕ(z)dz =2iπ.((−i)/(2(√2))) =(π/(√2)) ⇒  I_n =(π/(√2))   with n≥1 .

$${we}\:{have}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+\frac{\mathrm{1}+{cos}\left(\mathrm{2}{nx}\right)}{\mathrm{2}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{\mathrm{2}{dx}}{\mathrm{3}+{cos}\left(\mathrm{2}{nx}\right)}\:=_{\mathrm{2}{nx}={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{2}{n}\pi} \:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}+{cost}}\:\frac{{dt}}{\mathrm{2}{n}} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\mathrm{2}{n}\pi} \:\:\:\:\:\frac{{dt}}{\mathrm{3}+{cost}}\:\Rightarrow{nI}_{{n}} \:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\mathrm{2}{k}\pi} ^{\mathrm{2}\left({k}+\mathrm{1}\right)\pi} \:\:\frac{{dt}}{\mathrm{3}+{cost}} \\ $$$$=_{{t}=\mathrm{2}{k}\pi\:+{x}} \:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{3}\:+{cos}\left({x}+\mathrm{2}{k}\pi\right)} \\ $$$$={n}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{3}+{cosx}}\:\Rightarrow\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{3}+{cosx}}\:\forall\:{n}\geqslant\mathrm{1}{and} \\ $$$${I}_{{o}} =\:\pi\:{changement}\:{e}^{{ix}} \:\:={z}\:{give} \\ $$$${I}_{{n}} =\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{3}\:+\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{2}{dz}}{{iz}\left\{\:\mathrm{6}\:+{z}+{z}^{−\mathrm{1}} \right\}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\frac{−\mathrm{2}{idz}}{\mathrm{6}{z}+{z}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${let}\:\varphi\left({z}\right)\:=\:\frac{−\mathrm{2}{i}}{{z}^{\mathrm{2}} \:+\mathrm{6}{z}\:+\mathrm{1}}\:{poles}\:{of}\:\varphi? \\ $$$$\Delta^{'} =\mathrm{3}^{\mathrm{2}} −\mathrm{1}=\mathrm{8}\:\Rightarrow{z}_{\mathrm{1}} =−\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:\:{and}\:{z}_{\mathrm{2}} =−\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mid{z}_{\mathrm{1}} \mid−\mathrm{1}\:=\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{1}=\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}<\mathrm{0}\:\Rightarrow\mid{z}_{\mathrm{1}} \mid<\mathrm{1} \\ $$$$\mid{z}_{\mathrm{2}} \mid−\mathrm{1}=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{1}=\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}>\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right)\:{but} \\ $$$$\varphi\left({z}\right)\:=\frac{−\mathrm{2}{i}}{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\Rightarrow{Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\frac{−\mathrm{2}{i}}{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} } \\ $$$$=\frac{−\mathrm{2}{i}}{\mathrm{4}\sqrt{\mathrm{2}}}\:=\frac{−{i}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow\:\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi.\frac{−{i}}{\mathrm{2}\sqrt{\mathrm{2}}}\:=\frac{\pi}{\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${I}_{{n}} =\frac{\pi}{\sqrt{\mathrm{2}}}\:\:\:{with}\:{n}\geqslant\mathrm{1}\:. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by math khazana by abdo last updated on 02/Aug/18

I_0 =(π/2)

$${I}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com