All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36940 by maxmathsup by imad last updated on 07/Jun/18
findf(a)=∫0aarctan(a2−x2)dx
Commented by math khazana by abdo last updated on 08/Jun/18
changementa2−x2=tgivea2−x2=t2⇒x2=a2−t2⇒x=a2−t2⇒dx=−2tdt2a2−t2f(a)=∫0aarctan(t)tdta2−t2bypartsf(a)=[−arctan(t)a2−t2]0a−∫0a−a2−t21+t2dt=∫0aa2−t21+t2dtchangementt=asinαgivef(a)=∫0π2∣a∣cosα1+a2sin2αacosαdα=a∣a∣∫0π2cos2α1+a2sin2αdαbutcos2α1+a2sin2α=11+tan2α1+a2(1−11+tan2α)=1(1+tan2α)(1+a2tan2α).11+tan2α=11+a2tan2α⇒f(a)=a∣a∣∫0π2dα1+a2tan2α=atan(α)=xa∣a∣∫0+∞11+x21a(1+x2a2)dx=∣a∣∫0∞a2dx(1+x2)(x2+a2)case1a>0anda≠1⇒f(a)=a32∫−∞+∞dx(x2+1)(x2+a2)letφ(z)=1(z2+1)(z2+a2)∫−∞+∞φ(z)dz=2iπ{Res(φ,i)+Res(φ,ia)}φ(z)=1(z−i)(z+i)(z−ia)(z+ia)Res(φ,i)=12i(a2−1)Res(φ^,ia)=12ia(1−a2)⇒∫−∞+∞φ(z)dz=2iπ{12i(a2−1)+12ia(1−a2)}=πa2−1{1−1a}=π(a−1)a(a2−1)=πa(a+1)f(a)=a32.πa(a+1)=πa22(a+1)case2a<0anda≠−1wefolowthesamemethod...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com