Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36940 by maxmathsup by imad last updated on 07/Jun/18

find f(a)= ∫_0 ^a  arctan((√(a^2  −x^2 )))dx

findf(a)=0aarctan(a2x2)dx

Commented by math khazana by abdo last updated on 08/Jun/18

changement (√(a^2  −x^2 ))=t givea^2  −x^2  =t^2  ⇒  x^2 =a^2  −t^2  ⇒x=(√(a^2  −t^2 ))⇒dx = ((−2tdt)/(2(√(a^2  −t^2 ))))  f(a) = ∫_0 ^a  arctan(t) ((t dt)/(√(a^2  −t^2 ))) by parts  f(a) =[−arctan(t)(√(a^2  −t^2 ))]_0 ^a   −∫_0 ^a   ((−(√(a^2  −t^2 )))/(1+t^2 )) dt  = ∫_0 ^a     ((√(a^2  −t^2 ))/(1+t^2 )) dt changement t= a sinα give  f(a) = ∫_0 ^(π/2)   ((∣a∣cosα)/(1+a^2 sin^2 α)) acosα dα  =a∣a∣ ∫_0 ^(π/2)     ((cos^2 α)/(1+a^2  sin^2 α))dα  but ((cos^2 α)/(1+a^2 sin^2 α)) =  ((1/(1+tan^2 α))/(1+a^2 (1−(1/(1+tan^2 α)))))  = (1/((1+tan^2 α)(1+a^2  tan^2 α).(1/(1+tan^2 α))))  = (1/(1 +a^2  tan^2 α)) ⇒ f(a)=a∣a∣ ∫_0 ^(π/2)      (dα/(1+a^2 tan^2 α))  =_(atan(α)=x)   a∣a∣ ∫_0 ^(+∞)      (1/(1+x^2 ))  (1/(a( 1+(x^2 /a^2 ))))dx  =∣a∣ ∫_0 ^∞        ((a^2 dx)/((1+x^2 )( x^2  +a^2 )))  case1  a>0  anda≠1⇒f(a) =(a^3 /2) ∫_(−∞) ^(+∞)    (dx/((x^2  +1)(x^2  +a^2 )))  let ϕ(z) = (1/((z^2  +1)(z^2  +a^2 )))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,i)+Res(ϕ,ia)}  ϕ(z)= (1/((z−i)(z+i)(z−ia)(z+ia)))  Res(ϕ,i)= (1/(2i(a^2 −1)))  Res(ϕ^� ,ia) = (1/(2ia(1−a^2 ))) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{  (1/(2i(a^2  −1))) +(1/(2ia(1−a^2 )))}  =(π/(a^2 −1)){ 1−(1/a)}= ((π(a−1))/(a(a^2 −1))) =(π/(a(a+1)))  f(a)= (a^3 /2) .(π/(a(a+1))) = ((πa^2 )/(2(a+1)))  case 2 a<0 and a≠−1 we folow the same method...

changementa2x2=tgivea2x2=t2x2=a2t2x=a2t2dx=2tdt2a2t2f(a)=0aarctan(t)tdta2t2bypartsf(a)=[arctan(t)a2t2]0a0aa2t21+t2dt=0aa2t21+t2dtchangementt=asinαgivef(a)=0π2acosα1+a2sin2αacosαdα=aa0π2cos2α1+a2sin2αdαbutcos2α1+a2sin2α=11+tan2α1+a2(111+tan2α)=1(1+tan2α)(1+a2tan2α).11+tan2α=11+a2tan2αf(a)=aa0π2dα1+a2tan2α=atan(α)=xaa0+11+x21a(1+x2a2)dx=∣a0a2dx(1+x2)(x2+a2)case1a>0anda1f(a)=a32+dx(x2+1)(x2+a2)letφ(z)=1(z2+1)(z2+a2)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,ia)}φ(z)=1(zi)(z+i)(zia)(z+ia)Res(φ,i)=12i(a21)Res(φ^,ia)=12ia(1a2)+φ(z)dz=2iπ{12i(a21)+12ia(1a2)}=πa21{11a}=π(a1)a(a21)=πa(a+1)f(a)=a32.πa(a+1)=πa22(a+1)case2a<0anda1wefolowthesamemethod...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com