Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36965 by MJS last updated on 07/Jun/18

∫((x^5 −x^4 +x^3 −1)/((x^2 −x+1)^3 ))dx=

x5x4+x31(x2x+1)3dx=

Commented by rahul 19 last updated on 07/Jun/18

is ostradosgki method applicable here?

isostradosgkimethodapplicablehere?

Commented by MJS last updated on 07/Jun/18

I′ll post a faster method tomorrow

Illpostafastermethodtomorrow

Commented by MJS last updated on 07/Jun/18

yes Sir!

yesSir!

Answered by MJS last updated on 07/Jun/18

Standard Method  ∫((x^5 −x^4 +x^3 −1)/((x^2 −x+1)^3 ))dx=  =∫((x+1)/(x^2 −x+1))dx−∫(dx/((x^2 −x+1)^2 ))−∫(dx/((x^2 −x+1)^3 ))=              ∫((x+1)/(x^2 −x+1))dx=(1/2)∫((2x−1)/(x^2 −x+1))dx+(3/2)∫(dx/(x^2 −x+1))=                        (1/2)∫((2x−1)/(x^2 −x+1))dx=                                [t=x^2 −x+1 → dx=(dt/(2x−1))]                      =(1/2)∫(dt/t)=(1/2)ln t =(1/2)ln(x^2 −x+1)                        (3/2)∫(dx/(x^2 −x+1))=(3/2)∫(dx/((x−(1/2))^2 +(3/4)))=                                [t=((√3)/3)(2x−1) → dx=((√3)/2)dt]                      =(√3)∫(dt/(t^2 +1))=((2(√3))/3)arctan t=                      =(√3)arctan(((√3)/3)(2x−1))              =(1/2)ln(x^2 −x+1)+(√3)arctan(((√3)/3)(2x−1))              ∫(dx/((x^2 −x+1)^2 ))=16∫(dx/(((2x−1)^2 +3)^2 ))=                      [t=2x−1 → dx=(dt/2)]            =8∫(dt/((t^2 +3)^2 ))=                      [∫(dt/((at^2 +b)^n ))=(t/(2b(n−1)(at^2 +b)^(n−1) ))+                           +((2n−3)/(2b(n−1)))∫(dt/((at^2 +b)^(n−1) ))]            =8((t/(6(t^2 +3)))+(1/6)∫(dt/(t^2 +3)))=                        (1/6)∫(dt/(t^2 +3))=                                [u=((√3)/3)t → dt=(√3)du]                      =((√3)/(18))∫(du/(u^2 +1))=((√3)/3)arctan u=                      =((√3)/(18))arctan(((√3)/3)t)              =8((t/(6(t^2 +3)))+((√3)/(18))arctan(((√3)/3)t))=            =((2x−1)/(3(x^2 −x+1)))+((4(√3))/9)arctan(((√3)/3)(2x−1))              ∫(dx/((x^2 −x+1)^3 ))=64∫(dx/(((2x−1)^2 +3)^3 ))=                      [t=2x−1 → dx=(dt/2)]            =32∫(dt/((t^2 +3)^3 ))=                      [∫(dt/((at^2 +b)^n ))=(t/(2b(n−1)(at^2 +b)^(n−1) ))+                           +((2n−3)/(2b(n−1)))∫(dt/((at^2 +b)^(n−1) ))]            =32((t/(12(t^2 +3)^2 ))+(1/4)∫(dt/((t^2 +3)^2 )))=            =32((t/(12(t^2 +3)^2 ))+(1/4)((t/(6(t^2 +3)))+(1/6)∫(dt/(t^2 +3))))=            =((8t)/(3(t^2 +3)^2 ))+((4t)/(3(t^2 +3)))+((4(√3))/9)arctan(((√3)/3)t)=            =((4t(t^2 +5))/(3(t^2 +3)^2 ))+((4(√3))/9)arctan(((√3)/3)t)=            =(((2x−1)(2x^2 −2x+3))/(6(x^2 −x+1)^2 ))+((4(√3))/9)arctan(((√3)/3)(2x−1))    =(1/2)ln(x^2 −x+1)+((√3)/9)arctan(((√3)/3)(2x−1))−       −(((2x−1)(4x^2 −4x+5))/(6(x^2 −x+1)^2 ))+C

StandardMethodx5x4+x31(x2x+1)3dx==x+1x2x+1dxdx(x2x+1)2dx(x2x+1)3=x+1x2x+1dx=122x1x2x+1dx+32dxx2x+1=122x1x2x+1dx=[t=x2x+1dx=dt2x1]=12dtt=12lnt=12ln(x2x+1)32dxx2x+1=32dx(x12)2+34=[t=33(2x1)dx=32dt]=3dtt2+1=233arctant==3arctan(33(2x1))=12ln(x2x+1)+3arctan(33(2x1))dx(x2x+1)2=16dx((2x1)2+3)2=[t=2x1dx=dt2]=8dt(t2+3)2=[dt(at2+b)n=t2b(n1)(at2+b)n1++2n32b(n1)dt(at2+b)n1]=8(t6(t2+3)+16dtt2+3)=16dtt2+3=[u=33tdt=3du]=318duu2+1=33arctanu==318arctan(33t)=8(t6(t2+3)+318arctan(33t))==2x13(x2x+1)+439arctan(33(2x1))dx(x2x+1)3=64dx((2x1)2+3)3=[t=2x1dx=dt2]=32dt(t2+3)3=[dt(at2+b)n=t2b(n1)(at2+b)n1++2n32b(n1)dt(at2+b)n1]=32(t12(t2+3)2+14dt(t2+3)2)==32(t12(t2+3)2+14(t6(t2+3)+16dtt2+3))==8t3(t2+3)2+4t3(t2+3)+439arctan(33t)==4t(t2+5)3(t2+3)2+439arctan(33t)==(2x1)(2x22x+3)6(x2x+1)2+439arctan(33(2x1))=12ln(x2x+1)+39arctan(33(2x1))(2x1)(4x24x+5)6(x2x+1)2+C

Answered by MJS last updated on 07/Jun/18

Ostrogradski′s Method  ∫(P/Q)=(P_1 /Q_1 )+∫(P_2 /Q_2 )  P=x^5 −x^4 +x^3 −1  Q=(x^2 −x+1)^3   Q′=3(2x−1)(x^2 −x+1)^2   Q_1 =gcd(Q,Q′)=(x^2 −x+1)^2   Q_2 =(Q/Q_1 )=x^2 −x+1  grade(P_i )<grade(Q_i ) ⇒  P_1 =c_1 x^3 +c_2 x^2 +c_3 x+c_4   P_2 =c_5 x+c_6   differentiate both sides of ∫(P/Q)=(P_1 /Q_1 )+∫(P_2 /Q_2 )  (P/Q)=((P_1 ′Q_1 −P_1 Q_1 ′)/Q_1 ^2 )+(P_2 /Q_2 ) ⇒  (this is the hardest part)  ⇒  c_5 =1  −(c_1 +2c_5 −c_6 )=−1  −(c_1 +2c_2 −3c_5 +2c_6 )=1  3c_1 −3c_3 −2c_5 +3c_6 =0  2c_2 +c_3 −4c_4 +c_5 −2c_6 =0  c_3 +2c_4 +c_6 =−1    c_1 =−(4/3); c_2 =3; c_3 =−(7/3); c_4 =(5/6); c_5 =1; c_6 =−(1/3)    P_1 =−(4/3)x^3 +2x^2 −(7/3)x+(5/6)  P_2 =x−(1/3)    ∫((x^5 −x^4 +x^3 −1)/((x^2 −x+1)^3 ))dx  =((−(4/3)x^3 +2x^2 −(7/3)x+(5/6))/((x^2 −x+1)^2 ))+∫((x−(1/3))/(x^2 −x+1))dx=  =−((8x^3 −12x^2 +14x−5)/(6(x^2 −x+1)^2 ))+∫((3x−1)/(3(x^2 −x+1)))dx=              ∫((3x−1)/(3(x^2 −x+1)))dx=(1/3)∫((3x−1)/(x^2 −x+1))dx=            (1/3)((3/2)∫((2x−1)/(x^2 −x+1))dx+(1/2)∫(dx/(x^2 −x+1)))=            (1/2)∫((2x−1)/(x^2 −x+1))dx+(1/6)∫(dx/(x^2 −x+1))=                        (1/2)∫((2x−1)/(x^2 −x+1))dx=                                [t=x^2 −x+1 → dx=(dt/(2x−1))]                      =(1/2)∫(dt/t)=(1/2)ln t=(1/2)ln(x^2 −x+1)                        (1/6)∫(dx/(x^2 −x+1))=(1/6)∫(dx/((x−(1/2))^2 +(3/4)))=                                [t=((√3)/3)(2x−1) → dx=((√3)/2)dt]                      ((√3)/9)∫(dt/(t^2 +1))=((√3)/9)arctan t=                      =((√3)/9)arctan(((√3)/3)(2x−1))              =(1/2)ln(x^2 −x+1)+((√3)/9)arctan(((√3)/3)(2x−1))    =(1/2)ln(x^2 −x+1)+((√3)/9)arctan(((√3)/3)(2x−1))−       −((8x^3 −12x^2 +14x−5)/(6(x^2 −x+1)^2 ))+C

OstrogradskisMethodPQ=P1Q1+P2Q2P=x5x4+x31Q=(x2x+1)3Q=3(2x1)(x2x+1)2Q1=gcd(Q,Q)=(x2x+1)2Q2=QQ1=x2x+1grade(Pi)<grade(Qi)P1=c1x3+c2x2+c3x+c4P2=c5x+c6differentiatebothsidesofPQ=P1Q1+P2Q2PQ=P1Q1P1Q1Q12+P2Q2(thisisthehardestpart)c5=1(c1+2c5c6)=1(c1+2c23c5+2c6)=13c13c32c5+3c6=02c2+c34c4+c52c6=0c3+2c4+c6=1c1=43;c2=3;c3=73;c4=56;c5=1;c6=13P1=43x3+2x273x+56P2=x13x5x4+x31(x2x+1)3dx=43x3+2x273x+56(x2x+1)2+x13x2x+1dx==8x312x2+14x56(x2x+1)2+3x13(x2x+1)dx=3x13(x2x+1)dx=133x1x2x+1dx=13(322x1x2x+1dx+12dxx2x+1)=122x1x2x+1dx+16dxx2x+1=122x1x2x+1dx=[t=x2x+1dx=dt2x1]=12dtt=12lnt=12ln(x2x+1)16dxx2x+1=16dx(x12)2+34=[t=33(2x1)dx=32dt]39dtt2+1=39arctant==39arctan(33(2x1))=12ln(x2x+1)+39arctan(33(2x1))=12ln(x2x+1)+39arctan(33(2x1))8x312x2+14x56(x2x+1)2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com