Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 36980 by Tinkutara last updated on 07/Jun/18

Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jun/18

charge densigy=λ  let length of rod=l=10cm  distance of point p from the centre of rod is  h=(((√3) )/2)l....as per question point p and two   end of rods make a equilateral  triangle  from centre of rod along the length lf rod  at adistance x se takda small strip  dx.  the charge in dx element is=λdx  electric field dE=(1/(4Πε_0 ))×((λdx)/(((√(h^2 +x^2 )^2 ))))   effectivedE=(1/(4Πε_0 ))×((λdx)/(((√(h_ ^2 +x^2 )^2 ))))cosθ  =(1/(4Πε_0 ))×(((λhdx)/((h^2 +x^2 )(3/2)))     when cosθ=((h/(√(h^2 +x^3 ))))  E effective.  =(1/(4Πε_0 ))∫_(−(l/2)) ^(l/2) ((λhdx)/((h^2 +x^2 )^(3/2) ))  =((λh)/(4Πε_0 ))∫_(−(l/2)) ^(l/2) (dx/((h^2 +x^2 )^(3/2) ))......eqn1    x=htanθ   dx=hsec^2 θdθ  let I=∫(dx/((h^2 +x^2 )^(3/2) ))  =∫((hsec^2 θdθ)/(h^3 sec^3 θ))  =(1/h^2 )∫cosθdθ  =(1/h^2 )sinθ  =(1/h^2 )(x/(√(x^2 +h^2 )))  =((λh)/(4Πε_0 ))×(1/h^2 )∣(x/(√(x^2 +h^2 )))∣_((−l)/2) ^(l/2)     =(λ/(4Πε_0 h))×{((l/2)/(√((l^2 /4)+h^2 )))−(((−l)/2)/(√((l^2 /4)+h^2 )))}  =(λ/(4Πε_0 h))×{(l/(√((l^2 /4)+((3l^2 )/4))))}  =(λ/(4Πε_0 h))×1  =((q/l)/(4Πε_0 ((((√3) )/2)l)))=((q×2)/(4Πε_0 ×(√3) ×l^2 ))  =((50×10^(−6) ×9×10^9 ×2)/((√3) ×(0.1)^2 ))  =((450)/(√3))×2×10^(−6+9+2)   =150(√3) ×2×10^5   =300(√3) ×10^5   =3(√3) ×10^7

$${charge}\:{densigy}=\lambda \\ $$$${let}\:{length}\:{of}\:{rod}={l}=\mathrm{10}{cm} \\ $$$${distance}\:{of}\:{point}\:{p}\:{from}\:{the}\:{centre}\:{of}\:{rod}\:{is} \\ $$$${h}=\frac{\sqrt{\mathrm{3}}\:}{\mathrm{2}}{l}....{as}\:{per}\:{question}\:{point}\:{p}\:{and}\:{two}\: \\ $$$${end}\:{of}\:{rods}\:{make}\:{a}\:{equilateral}\:\:{triangle} \\ $$$${from}\:{centre}\:{of}\:{rod}\:{along}\:{the}\:{length}\:{lf}\:{rod} \\ $$$${at}\:{adistance}\:{x}\:{se}\:{takda}\:{small}\:{strip} \\ $$$${dx}. \\ $$$${the}\:{charge}\:{in}\:{dx}\:{element}\:{is}=\lambda{dx} \\ $$$${electric}\:{field}\:{dE}=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\lambda{dx}}{\left(\sqrt{\left.{h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\right.}\: \\ $$$${effectivedE}=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\lambda{dx}}{\left(\sqrt{\left.{h}_{} ^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\right.}{cos}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\left(\frac{\lambda{hdx}}{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)\frac{\mathrm{3}}{\mathrm{2}}}\:\:\:\:\:{when}\:{cos}\theta=\left(\frac{{h}}{\sqrt{{h}^{\mathrm{2}} +{x}^{\mathrm{3}} }}\right)\right. \\ $$$${E}\:{effective}.\:\:=\frac{\mathrm{1}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }\int_{−\frac{{l}}{\mathrm{2}}} ^{\frac{{l}}{\mathrm{2}}} \frac{\lambda{hdx}}{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=\frac{\lambda{h}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }\int_{−\frac{{l}}{\mathrm{2}}} ^{\frac{{l}}{\mathrm{2}}} \frac{{dx}}{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }......{eqn}\mathrm{1} \\ $$$$ \\ $$$${x}={htan}\theta\:\:\:{dx}={hsec}^{\mathrm{2}} \theta{d}\theta \\ $$$${let}\:{I}=\int\frac{{dx}}{\left({h}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=\int\frac{{hsec}^{\mathrm{2}} \theta{d}\theta}{{h}^{\mathrm{3}} {sec}^{\mathrm{3}} \theta} \\ $$$$=\frac{\mathrm{1}}{{h}^{\mathrm{2}} }\int{cos}\theta{d}\theta \\ $$$$=\frac{\mathrm{1}}{{h}^{\mathrm{2}} }{sin}\theta \\ $$$$=\frac{\mathrm{1}}{{h}^{\mathrm{2}} }\frac{{x}}{\sqrt{{x}^{\mathrm{2}} +{h}^{\mathrm{2}} }} \\ $$$$=\frac{\lambda{h}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} }×\frac{\mathrm{1}}{{h}^{\mathrm{2}} }\mid\frac{{x}}{\sqrt{{x}^{\mathrm{2}} +{h}^{\mathrm{2}} }}\mid_{\frac{−{l}}{\mathrm{2}}} ^{\frac{{l}}{\mathrm{2}}} \:\: \\ $$$$=\frac{\lambda}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} {h}}×\left\{\frac{\frac{{l}}{\mathrm{2}}}{\sqrt{\frac{{l}^{\mathrm{2}} }{\mathrm{4}}+{h}^{\mathrm{2}} }}−\frac{\frac{−{l}}{\mathrm{2}}}{\sqrt{\frac{{l}^{\mathrm{2}} }{\mathrm{4}}+{h}^{\mathrm{2}} }}\right\} \\ $$$$=\frac{\lambda}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} {h}}×\left\{\frac{{l}}{\sqrt{\frac{{l}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{3}{l}^{\mathrm{2}} }{\mathrm{4}}}}\right\} \\ $$$$=\frac{\lambda}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} {h}}×\mathrm{1} \\ $$$$=\frac{\frac{{q}}{{l}}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} \left(\frac{\sqrt{\mathrm{3}}\:}{\mathrm{2}}{l}\right)}=\frac{{q}×\mathrm{2}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} ×\sqrt{\mathrm{3}}\:×{l}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{50}×\mathrm{10}^{−\mathrm{6}} ×\mathrm{9}×\mathrm{10}^{\mathrm{9}} ×\mathrm{2}}{\sqrt{\mathrm{3}}\:×\left(\mathrm{0}.\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{450}}{\sqrt{\mathrm{3}}}×\mathrm{2}×\mathrm{10}^{−\mathrm{6}+\mathrm{9}+\mathrm{2}} \\ $$$$=\mathrm{150}\sqrt{\mathrm{3}}\:×\mathrm{2}×\mathrm{10}^{\mathrm{5}} \\ $$$$=\mathrm{300}\sqrt{\mathrm{3}}\:×\mathrm{10}^{\mathrm{5}} \\ $$$$=\mathrm{3}\sqrt{\mathrm{3}}\:×\mathrm{10}^{\mathrm{7}} \\ $$$$ \\ $$$$ \\ $$

Commented by ajfour last updated on 08/Jun/18

see Q.37045

Commented by tanmay.chaudhury50@gmail.com last updated on 08/Jun/18

i have done it but your method is short...

$${i}\:{have}\:{done}\:{it}\:{but}\:{your}\:{method}\:{is}\:{short}... \\ $$

Commented by Tinkutara last updated on 08/Jun/18

Thanks Sir!

Answered by ajfour last updated on 08/Jun/18

E=(q/(4πε_0 r_⊥ r_(end) ))  r_⊥ =(√(100−25)) =5(√3) cm  r_(end) =10cm  E=((50×10^(−6) ×9×10^9 )/(50(√3)×10^(−4) ))     =3(√3)×10^7  (N/C) .

$${E}=\frac{{q}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} {r}_{\bot} {r}_{{end}} } \\ $$$${r}_{\bot} =\sqrt{\mathrm{100}−\mathrm{25}}\:=\mathrm{5}\sqrt{\mathrm{3}}\:{cm} \\ $$$${r}_{{end}} =\mathrm{10}{cm} \\ $$$${E}=\frac{\mathrm{50}×\mathrm{10}^{−\mathrm{6}} ×\mathrm{9}×\mathrm{10}^{\mathrm{9}} }{\mathrm{50}\sqrt{\mathrm{3}}×\mathrm{10}^{−\mathrm{4}} } \\ $$$$\:\:\:=\mathrm{3}\sqrt{\mathrm{3}}×\mathrm{10}^{\mathrm{7}} \:\frac{{N}}{{C}}\:. \\ $$

Commented by Tinkutara last updated on 08/Jun/18

Thank you Sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com