Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37004 by behi83417@gmail.com last updated on 07/Jun/18

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18

∫((√(1+x^p   ))/x)dx  ∫((1+x^p )/(x(√(1+x^p  ))))dx  ∫((x^(p−1) (1+x^p ))/(x^p (√(1+x^p  ))))dx  t=x^p   dt=px^(p−1) dx  ∫(dt/p)×(((1+t))/(t(√(1+t))))  (1/p)∫(dt/(t(√(1+t)))) +(1/p)∫(dt/(√(1+t)))  k^2 =1+t   2kdk=dt  (1/p)∫((2kdk)/((k^2 −1)k))+(1/p)∫((2kdk)/k)  (2/p)∫(dk/(k^2 −1))+(2/p)∫dk  (2/p)×(1/2)∫(((k+1)−(k−1))/((k+1)(k−1)))dk+(2/p)∫dk  (1/p)ln∣((k−1)/(k+1))∣+(2/p)k  +c  (1/p)ln∣(((√(1+x^p   ))  −1)/((√(1+x^p  ))  +1))∣  +(2/p)k  (1/p)ln∣(((√(1+x^p ))  −1)/((√(1+x_ ^p  ))  +1))∣+(2/p)(√(1+x^p ))

1+xpxdx1+xpx1+xpdxxp1(1+xp)xp1+xpdxt=xpdt=pxp1dxdtp×(1+t)t1+t1pdtt1+t+1pdt1+tk2=1+t2kdk=dt1p2kdk(k21)k+1p2kdkk2pdkk21+2pdk2p×12(k+1)(k1)(k+1)(k1)dk+2pdk1plnk1k+1+2pk+c1pln1+xp11+xp+1+2pk1pln1+xp11+xp+1+2p1+xp

Commented by behi83417@gmail.com last updated on 07/Jun/18

mr tanmay! nice work done by you.  thanks!

mrtanmay!niceworkdonebyyou.thanks!

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18

its alright...thank you sir

itsalright...thankyousir

Answered by ajfour last updated on 07/Jun/18

let  x^( p) =tan^2 θ  ⇒    px^( p−1) dx=2tan θsec^2 θdθ  ⇒       px^p ( (dx/x))=2tan θsec^2 θdθ  or       ptan^2 θ( (dx/x))=2tan θsec^2 θdθ  I=∫((sec θ(2tan θsec^2 θ)dθ)/(ptan^2 θ))      =(2/p)∫(dθ/(sin θcos^2 θ))     =(2/p)∫((sin θdθ)/(cos^2 θ(1−cos^2 θ)))     =(2/p)∫(dt/(t^2 (t^2 −1)))        (t=cos θ)    (1/(t^2 (t−1)(t+1)))=(A/t)+(B/t^2 )+(C/(t−1))+(D/(t+1))    C=(1/2),  D=−(1/2) ,  B=−1  coeff. of t^3  is  A+C+D=0   ⇒   A=0  ∴ I= (2/p)[(1/t)+(1/2)ln ∣((t−1)/(t+1))∣]+c   As  x^( p)  = tan^2 θ= sec^2 θ−1=(1/t^2 )−1  ⇒ t=(1/(√(1+x^p )))  I=(2/p)[(√(1+x^( p) ))+(1/2)ln ∣((1−(√(1+x^p )))/(1+(√(1+x^p ))))∣]+c .  for  p=1       I_1 = 2(√(1+x^( p) ))+ln ∣((1−(√(1+x)))/(1+(√(1+x))))∣+c .

letxp=tan2θpxp1dx=2tanθsec2θdθpxp(dxx)=2tanθsec2θdθorptan2θ(dxx)=2tanθsec2θdθI=secθ(2tanθsec2θ)dθptan2θ=2pdθsinθcos2θ=2psinθdθcos2θ(1cos2θ)=2pdtt2(t21)(t=cosθ)1t2(t1)(t+1)=At+Bt2+Ct1+Dt+1C=12,D=12,B=1coeff.oft3isA+C+D=0A=0I=2p[1t+12lnt1t+1]+cAsxp=tan2θ=sec2θ1=1t21t=11+xpI=2p[1+xp+12ln11+xp1+1+xp]+c.forp=1I1=21+xp+ln11+x1+1+x+c.

Commented by behi83417@gmail.com last updated on 07/Jun/18

thanks in advance sir Ajfour!  perfect method.

thanksinadvancesirAjfour!perfectmethod.

Answered by MJS last updated on 07/Jun/18

p=0  (√2)∫(1/x)dx=(√2)ln x +C  p≠0  ∫((√(1+x^p ))/x)dx=            [t=x^p  → dx=(x^(1−p) /p)dt]  =(1/p)∫((√(1+t))/t)dt=            [u=(√(1+t)) → dt=2(√(1+t))du]  =(2/p)∫(u^2 /(u^2 −1))du=(2/p)(∫du+∫(du/(u^2 −1)))=  =(2/p)(u+(1/2)(∫(du/(u−1))−∫(du/(u+1))))=  =(2/p)(u+(1/2)(ln(u−1)−ln(u+1)))=  =(2/p)(u+(1/2)ln ((u−1)/(u+1)))=(2/p)(√(1+t))+(1/p)ln (((√(1+t))−1)/((√(1+t))+1))=  =(2/p)(√(1+x^p ))+(1/p)ln (((√(1+x^p ))−1)/((√(1+x^p ))+1))+C

p=021xdx=2lnx+Cp01+xpxdx=[t=xpdx=x1ppdt]=1p1+ttdt=[u=1+tdt=21+tdu]=2pu2u21du=2p(du+duu21)==2p(u+12(duu1duu+1))==2p(u+12(ln(u1)ln(u+1)))==2p(u+12lnu1u+1)=2p1+t+1pln1+t11+t+1==2p1+xp+1pln1+xp11+xp+1+C

Commented by behi83417@gmail.com last updated on 07/Jun/18

thank you very much sir!  simple and smart.

thankyouverymuchsir!simpleandsmart.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com