Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37018 by behi83417@gmail.com last updated on 08/Jun/18

Commented by math khazana by abdo last updated on 08/Jun/18

1) let I = ∫   ((√(1+x^2 ))/(1+x))dx changement x=sht give  I = ∫    ((ch(t))/(1+sh(t)))ch(t)dt= ∫   ((ch^2 (t)dt)/(1+sh(t)))  =(1/2) ∫    ((1+ch(2t))/(1+sh(t)))dt =(1/2) ∫   ((1 +((e^(2t)  +e^(−2t) )/2))/(1+((e^t  −e^(−t) )/2)))dt  2I  =  ∫   ((2 +e^(2t)  +e^(−2t) )/(2 +e^t  −e^(−t) ))dt   =_(e^t =u)     ∫    ((2  +u^2  +(1/u^2 ))/(2 +u −(1/u))) du =∫    ((2u^2  +u^4  +1)/(2u +u^2  −1))(1/u)du  =∫    ((u^4  +2u^2  +1)/(u^3  +2u^2  −u))du  = ∫   ((u(u^3  +2u^2 −u) −2u^3  +u^2  +2u^2  +1)/(u^3  +2u^2  −u)) du  = (u^2 /2) +∫   ((−2u^3  +3u^2  +1)/(u^3  +2u^2  −u))du  =(u^2 /2) +∫   ((−2( u^3  +2u^2  −u) +4u^2  −2u +3u^2  +1)/(u^3  +2u^2  −u))du  =(u^2 /2) −2u  +∫    ((7u^2  −2u +1)/(u(u^2  +2u−1)))du let?decompose  F(u)= ((7u^2 −2u +1)/(u(u^2  +2u−1))) roots of u^2  +2u−1  Δ^′  = 2 ⇒ u_1 =−1+(√2)  and u_2 =−1−(√2)  F(u) = ((7u^2  −2u +1)/(u(u−u_1 )(u−u_2 ))) = (a/u)  +(b/(u−u_1 )) +(c/(u−u_2 ))  its simple to find a ,b and c so  ∫ F(u)du =aln∣u∣ +bln∣u−u_1 ∣ +cln∣u−u_2 ∣ +C  =at +b ln∣ e^t  −u_1 ∣ +c ln∣ e^t  −u_2 ∣ +C  =aln(x+(√(1+x^2 )) ) +bln∣ x+(√(1+x^2 ))−u_1 ∣  +c ln∣ x+(√(1+x^2 )) −u_2 ∣ +C = 2I ⇒  I =(a/2)ln(x+(√(1+x^2 ))) +(b/2)ln∣x+(√(1+x^2 )) −u_1 ∣  +(c/2)ln∣x+(√(1+x^2 )) −u_2 ∣ +C .

1)letI=1+x21+xdxchangementx=shtgiveI=ch(t)1+sh(t)ch(t)dt=ch2(t)dt1+sh(t)=121+ch(2t)1+sh(t)dt=121+e2t+e2t21+etet2dt2I=2+e2t+e2t2+etetdt=et=u2+u2+1u22+u1udu=2u2+u4+12u+u211udu=u4+2u2+1u3+2u2udu=u(u3+2u2u)2u3+u2+2u2+1u3+2u2udu=u22+2u3+3u2+1u3+2u2udu=u22+2(u3+2u2u)+4u22u+3u2+1u3+2u2udu=u222u+7u22u+1u(u2+2u1)dulet?decomposeF(u)=7u22u+1u(u2+2u1)rootsofu2+2u1Δ=2u1=1+2andu2=12F(u)=7u22u+1u(uu1)(uu2)=au+buu1+cuu2itssimpletofinda,bandcsoF(u)du=alnu+blnuu1+clnuu2+C=at+blnetu1+clnetu2+C=aln(x+1+x2)+blnx+1+x2u1+clnx+1+x2u2+C=2II=a2ln(x+1+x2)+b2lnx+1+x2u1+c2lnx+1+x2u2+C.

Commented by behi83417@gmail.com last updated on 08/Jun/18

∫ ((√(1+x^2 ))/(1+x))dx=  (√2)ln((((√(1+x^2 ))−x−(√2)−1)/((√(1+x^2 ))−x+(√2)−1)))+ln((√(1+x^2 ))−x)+(√(1+x^2 ))+C

1+x21+xdx=2ln(1+x2x211+x2x+21)+ln(1+x2x)+1+x2+C

Commented by MJS last updated on 08/Jun/18

sorry but this is wrong  ∫ ((√(1+x^2 ))/(1+x))dx=            [t=arctan x → dx=sec^2  t dt]  =∫((sec^2  t (√(1+tan^2  t)))/(1+tan t))dt=∫((sec^3  t)/(1+tan t))=            [Weierstrass: u=tan (t/2) → dt=((2du)/(1+u^2 ))]  =−2∫(((u^2 +1)^2 )/((u−1)^2 (u+1)^2 (u^2 −2u−1)))du=  =−4∫(du/(u^2 −2u−1))+       +∫(du/((u−1)^2 ))−∫(du/((u+1)^2 ))+            +∫(du/(u−1))−∫(du/(u+1))=  =−(√2)∫(du/(u−(√2)−1))+(√2)∫(du/(u+(√2)−1))−       −(1/(u−1))+(1/(u+1))+            +ln(u−1)−ln(u+1)=  =−(√2)ln(u−(√2)−1)+(√2)ln(u+(√2)−1)+       +(2/(1−u^2 ))+ln ((u−1)/(u+1))=  =(√2)ln ((u+(√2)−1)/(u−(√2)−1))+ln ((u−1)/(u+1))+(2/(1−u^2 ))=  =(√2)ln ((tan (t/2) +(√2)−1)/(tan (t/2) −(√2)−1))+ln ((tan (t/2) −1)/(tan (t/2) +1))+(2/(1−tan^2  (t/2)))=            [tan ((arctan x)/2)=(((√(x^2 +1))−1)/x)]  =(√2)ln (((√(x^2 +1))−(1−(√2))x−1)/((√(x^2 +1))−(1+(√2))x−1))+ln (((√(x^2 +1))−x−1)/((√(x^2 +1))+x−1))+(x^2 /((√(x^2 +1))−1))=  =(√2)ln (((√(x^2 +1))−(1−(√2))x−1)/((√(x^2 +1))−(1+(√2))x−1))+ln(x−(√(x^2 +1)))+(√(x^2 +1))+1=  =(√2)ln (((1−(√2))(x−1)−(2−(√2))(√(x^2 +1)))/(x+1))+ln(x−(√(x^2 +1)))+(√(x^2 +1))+C

sorrybutthisiswrong1+x21+xdx=[t=arctanxdx=sec2tdt]=sec2t1+tan2t1+tantdt=sec3t1+tant=[Weierstrass:u=tant2dt=2du1+u2]=2(u2+1)2(u1)2(u+1)2(u22u1)du==4duu22u1++du(u1)2du(u+1)2++duu1duu+1==2duu21+2duu+211u1+1u+1++ln(u1)ln(u+1)==2ln(u21)+2ln(u+21)++21u2+lnu1u+1==2lnu+21u21+lnu1u+1+21u2==2lntant2+21tant221+lntant21tant2+1+21tan2t2=[tanarctanx2=x2+11x]=2lnx2+1(12)x1x2+1(1+2)x1+lnx2+1x1x2+1+x1+x2x2+11==2lnx2+1(12)x1x2+1(1+2)x1+ln(xx2+1)+x2+1+1==2ln(12)(x1)(22)x2+1x+1+ln(xx2+1)+x2+1+C

Answered by MJS last updated on 08/Jun/18

2)  ∫((√x)/(x^3 +x^2 +x+1))dx=            [t=(√x) → dx=2(√x)dt]  =2∫(t^2 /(t^6 +t^4 +t^2 +1))dt=2∫(t^2 /((t^4 +1)(t^2 +1)))dt=  =∫((t^2 +1)/(t^4 +1))dt−∫(dt/(t^2 +1))=∫((t^2 +1)/(t^4 +1))dt−arctan t=              ∫((t^2 +1)/(t^4 +1))dt=∫((t^2 +1)/((t^2 −(√2)t+1)(t^2 +(√2)t+1)))dt=            =(1/2)∫(dt/(t^2 −(√2)t+1))+(1/2)∫(dt/(t^2 +(√2)t+1))=            =(1/2)∫(dt/((t−((√2)/2))^2 +(1/2)))+(1/2)∫(dt/((t+((√2)/2))^2 +(1/2)))=                      [u=(√2)t±1 → dt=((√2)/2)du]            =((√2)/2)∫(du_− /(u_− ^2 +1))+((√2)/2)∫(du_+ /(u_+ ^2 +1))=            =((√2)/2)arctan u_−  +((√2)/2)arctan u_+ =            =((√2)/2)arctan((√2)t−1)+((√2)/2)arctan((√2)t+1)    =((√2)/2)arctan((√2)t−1)+((√2)/2)arctan((√2)t+1)−arctan t=  =((√2)/2)(arctan((√(2x))−1)+arctan((√(2x))+1))−arctan (√x)+C

2)xx3+x2+x+1dx=[t=xdx=2xdt]=2t2t6+t4+t2+1dt=2t2(t4+1)(t2+1)dt==t2+1t4+1dtdtt2+1=t2+1t4+1dtarctant=t2+1t4+1dt=t2+1(t22t+1)(t2+2t+1)dt==12dtt22t+1+12dtt2+2t+1==12dt(t22)2+12+12dt(t+22)2+12=[u=2t±1dt=22du]=22duu2+1+22du+u+2+1==22arctanu+22arctanu+==22arctan(2t1)+22arctan(2t+1)=22arctan(2t1)+22arctan(2t+1)arctant==22(arctan(2x1)+arctan(2x+1))arctanx+C

Answered by MJS last updated on 08/Jun/18

1) I messed around a little, found this:    ∫((√(1+x^2 ))/(1+x))dx=  =(√2)arcsinh(−((1−x)/(∣1+x∣)))−arcsinh x +(√(1+x^2 ))+C    let me explain:    ∫((√(1+x^2 ))/(1+x))dx=∫((1+x^2 )/((1+x)(√(1+x^2 ))))dx=∫((2+x^2 −1)/((1+x)(√(1+x^2 ))))dx=  =2∫(dx/((1+x)(√(1+x^2 ))))−∫((1−x^2 )/((1+x)(√(1+x^2 ))))dx=  =2∫(dx/((1+x)(√(1+x^2 ))))−∫(((1−x)(1+x))/((1+x)(√(1+x^2 ))))dx=  =2∫(dx/((1+x)(√(1+x^2 ))))−∫((1−x)/(√(1+x^2 )))dx=  =2∫(dx/((1+x)(√(1+x^2 ))))−∫(dx/(√(1+x^2 )))+∫(x/(√(1+x^2 )))dx=            [the 2^(nd)  and 3^(rd)  ones are standard            integrals]  =2∫(dx/((1+x)(√(1+x^2 ))))−arcsinh x +(√(1+x^2 ))    now consider this:  (d/dx)[arcsinh x]=(1/(√(1+x^2 )))  (d/dx)[arcsinh f(x)]=((f′(x))/(√(1+f^2 (x))))  let f(x)=((g(x))/(h(x)))=(u/v) ⇒  ⇒ ((f′(x))/(√(1+f^2 (x))))=(((u′v−uv′)/v^2 )/(√(1+(u/v)^2 )))=((u′v−uv′)/(∣v∣(√(u^2 +v^2 ))))  let v=1+x ⇒  ⇒ ((u′v−uv′)/(∣v∣(√(u^2 +v^2 ))))=((u′(1+x)−u)/(∣1+x∣(√(u^2 +1+2x+x^2 ))))  we′d like the following equations to be true:  (A)     u′(1+x)−u=2  (B)     (√(u^2 +1+2x+x^2 ))=(√(1+x^2 ))  (A) works with u=x−1 but (B)  (√(u^2 +1+2x+x^2 ))=  =(√((x−1)^2 +1+2x+x^2 ))=(√(2(1+x^2 )))  we now have:  (d/dx)[arcsinh(−((1−x)/(1+x)))]=((√2)/(∣1+x∣(√(1+x^2 )))) ⇒  ⇒ 2∫(dx/(∣1+x∣(√(1+x^2 ))))=(√2)arcsinh(−((1−x)/(1+x))) ⇒            [F(x)=arcsin(−((1−x)/(1+x))) has an uneven pole             at x=−1, F′(x) is increasing for −∞<x<∞            F^� (x)=arcsin(−((1−x)/(∣1+x∣))) has an even pole             at x=−1, F^� ′(x) is increasing for −∞<x<−1             and decreasing for −1<x<∞]  ⇒ 2∫(dx/((1+x)(√(1+x^2 ))))=(√2)arcsinh(−((1−x)/(∣1+x∣)))

1)Imessedaroundalittle,foundthis:1+x21+xdx==2arcsinh(1x1+x)arcsinhx+1+x2+Cletmeexplain:1+x21+xdx=1+x2(1+x)1+x2dx=2+x21(1+x)1+x2dx==2dx(1+x)1+x21x2(1+x)1+x2dx==2dx(1+x)1+x2(1x)(1+x)(1+x)1+x2dx==2dx(1+x)1+x21x1+x2dx==2dx(1+x)1+x2dx1+x2+x1+x2dx=[the2ndand3rdonesarestandardintegrals]=2dx(1+x)1+x2arcsinhx+1+x2nowconsiderthis:ddx[arcsinhx]=11+x2ddx[arcsinhf(x)]=f(x)1+f2(x)letf(x)=g(x)h(x)=uvf(x)1+f2(x)=uvuvv21+(u/v)2=uvuvvu2+v2letv=1+xuvuvvu2+v2=u(1+x)u1+xu2+1+2x+x2wedlikethefollowingequationstobetrue:(A)u(1+x)u=2(B)u2+1+2x+x2=1+x2(A)workswithu=x1but(B)u2+1+2x+x2==(x1)2+1+2x+x2=2(1+x2)wenowhave:ddx[arcsinh(1x1+x)]=21+x1+x22dx1+x1+x2=2arcsinh(1x1+x)[F(x)=arcsin(1x1+x)hasanunevenpoleatx=1,F(x)isincreasingfor<x<F¯(x)=arcsin(1x1+x)hasanevenpoleatx=1,F¯(x)isincreasingfor<x<1anddecreasingfor1<x<]2dx(1+x)1+x2=2arcsinh(1x1+x)

Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jun/18

2)∫_0 ^1 (((√x) )/(1+x+x^2 +x^3 ))dx  t^2 =x   dx=2tdt  ∫_0 ^1 ((t×2tdt)/(1+t^2 +t^4 +t^6 ))  =2∫_0 ^1 (t^2 /((1+t^2 )+t^4 (1+t^2 )))dt  =2∫_0 ^1 (t^2 /((1+t^2 )(1+t^4 )))dt  =2∫_0 ^1  (((t^2 +t^4 )−(1+t^4 )+1)/((1+t^2 )(1+t^4 )))dt  =2∫_0 ^1 (t^2 /(1+t^4 ))dt−2∫_0 ^1 (dt/(1+t^2 ))+2∫_0 ^1 (1/((1+t^2 )(1+t^4 )))dt  =2∫_0 ^1 (dt/(t^2 +(1/t^2 )))−2∫_0 ^1 (dt/(1+t^2 ))+2∫_0 ^1 (dt/(t(t+(1/t))t^2 (t^2 +(1/t^2 ))))  I_1 =∫_0 ^1 ((1−(1/t^2 )+1+(1/t^2 ))/(t^2 +(1/t^2 )))dt  =∫_0 ^1 ((d(t+(1/t)))/((t+(1/t))^2 −2))+∫_0 ^1 ((d(t−(1/t)))/((t−(1/t))^2 +2))  now uzeformula ∫(dk/(k^2 −a^2 ))   and ∫(dp/(p^2 +a^2 ))  ={(1/(2(√2) ))ln∣((t+(1/t)−(√2) )/(t+(1/t)+(√2) ))∣+(1/(√2))tan^(−1) (((t−(1/t))/(√2)))}_0 ^1 =I_1   I_2 =−2∫_0 ^1 (dt/(1+t^2 ))  ={−2×tan^(−1) (t)}_0 ^1   =I_2

2)01x1+x+x2+x3dxt2=xdx=2tdt01t×2tdt1+t2+t4+t6=201t2(1+t2)+t4(1+t2)dt=201t2(1+t2)(1+t4)dt=201(t2+t4)(1+t4)+1(1+t2)(1+t4)dt=201t21+t4dt201dt1+t2+2011(1+t2)(1+t4)dt=201dtt2+1t2201dt1+t2+201dtt(t+1t)t2(t2+1t2)I1=0111t2+1+1t2t2+1t2dt=01d(t+1t)(t+1t)22+01d(t1t)(t1t)2+2nowuzeformuladkk2a2anddpp2+a2={122lnt+1t2t+1t+2+12tan1(t1t2)}01=I1I2=201dt1+t2={2×tan1(t)}01=I2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com