Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37067 by math khazana by abdo last updated on 08/Jun/18

find ∫     (dx/((x+1)(√(1+x^2 ))))

$${find}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$

Commented by math khazana by abdo last updated on 09/Jun/18

changement x+1=(1/t) give t=(1/(x+1))    I = ∫     (t/(√(1+((1/t)−1)^2 ))) ((−dt)/t^2 )  =−∫     (dt/(t(√(1+ (((t−1)^2 )/t^2 )))))  =−∫     ((t dt)/(t(√(t^2  +t^2  −2t +1))))  =−∫      (dt/(√(2t^2  −2t +1)))?but  2t^2  −2t +1 =2{ t^2 −t +(1/2)}  =2 { (t−(1/2))^2  +(1/2) −(1/4)}=2{ (t−(1/2))^2   +(1/4)}  changemnt t−(1/2)=(1/2) u?give  I = −(1/(√2)) ∫       (1/((1/2)(√(1+u^2 )))) (du/2)  =−(1/(√2)) ∫   (du/(√(1+u^2 ))) +c  =−(1/(√2)) ln(u +(√(1+u^2 )) )+c  = −(1/(√2))ln( 2t−1 +(√(1+(2t−1)^2 ))) +c  =−(1/(√2))ln{ (2/(x+1)) −1 +(√(1+((2/(x+1)) −1)^2 )) +c

$${changement}\:{x}+\mathrm{1}=\frac{\mathrm{1}}{{t}}\:{give}\:{t}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$ \\ $$$${I}\:=\:\int\:\:\:\:\:\frac{{t}}{\sqrt{\mathrm{1}+\left(\frac{\mathrm{1}}{{t}}−\mathrm{1}\right)^{\mathrm{2}} }}\:\frac{−{dt}}{{t}^{\mathrm{2}} } \\ $$$$=−\int\:\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{{t}^{\mathrm{2}} }}} \\ $$$$=−\int\:\:\:\:\:\frac{{t}\:{dt}}{{t}\sqrt{{t}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{1}}} \\ $$$$=−\int\:\:\:\:\:\:\frac{{dt}}{\sqrt{\mathrm{2}{t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{1}}}?{but} \\ $$$$\mathrm{2}{t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{1}\:=\mathrm{2}\left\{\:{t}^{\mathrm{2}} −{t}\:+\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$$$=\mathrm{2}\:\left\{\:\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{4}}\right\}=\mathrm{2}\left\{\:\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:\:+\frac{\mathrm{1}}{\mathrm{4}}\right\} \\ $$$${changemnt}\:{t}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\:{u}?{give} \\ $$$${I}\:=\:−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\int\:\:\:\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{{du}}{\mathrm{2}} \\ $$$$=−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\int\:\:\:\frac{{du}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:+{c} \\ $$$$=−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{ln}\left({u}\:+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\:\right)+{c} \\ $$$$=\:−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{ln}\left(\:\mathrm{2}{t}−\mathrm{1}\:+\sqrt{\mathrm{1}+\left(\mathrm{2}{t}−\mathrm{1}\right)^{\mathrm{2}} }\right)\:+{c} \\ $$$$=−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{ln}\left\{\:\frac{\mathrm{2}}{{x}+\mathrm{1}}\:−\mathrm{1}\:+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}}{{x}+\mathrm{1}}\:−\mathrm{1}\right)^{\mathrm{2}} }\:+{c}\right. \\ $$

Answered by MJS last updated on 08/Jun/18

see my answer to qu. 37018 (1)

$$\mathrm{see}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{qu}.\:\mathrm{37018}\:\left(\mathrm{1}\right) \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18

t=(1/(x+1))  x+1=(1/t)    dx=−(1/t^2 )dt  =−∫(dt/t^2 )×(t/(√(1+((1/t)−1)^2 )))  =−∫(dt/t)×(t/(√(t^2 +(1−2t+t^2 ))))  =−∫(dt/(√(2t^2 −2t+1)))  =−(1/(√2))∫(dt/(√(t^2 −t+(1/2))))  =((−1)/(√2))∫(dt/(√(t^2 −2.t.(1/2)+(1/4)+(1/2)−(1/4))))    =((−1)/(√2))∫(dt/(√((t−(1/2))^2 +((1/(√2)))^2 )))  now use formula ∫(dx/(√(x^2 +a^2 )))

$${t}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${x}+\mathrm{1}=\frac{\mathrm{1}}{{t}}\:\:\:\:{dx}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$$=−\int\frac{{dt}}{{t}^{\mathrm{2}} }×\frac{{t}}{\sqrt{\mathrm{1}+\left(\frac{\mathrm{1}}{{t}}−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$=−\int\frac{{dt}}{{t}}×\frac{{t}}{\sqrt{{t}^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{2}{t}+{t}^{\mathrm{2}} \right)}} \\ $$$$=−\int\frac{{dt}}{\sqrt{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}}} \\ $$$$=−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{dt}}{\sqrt{{t}^{\mathrm{2}} −{t}+\frac{\mathrm{1}}{\mathrm{2}}}} \\ $$$$=\frac{−\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{dt}}{\sqrt{{t}^{\mathrm{2}} −\mathrm{2}.{t}.\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}}} \\ $$$$ \\ $$$$=\frac{−\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{dt}}{\sqrt{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }} \\ $$$${now}\:{use}\:{formula}\:\int\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }} \\ $$

Commented by math khazana by abdo last updated on 09/Jun/18

sir Tanmay you have commited a error of  calculus because t^2  −t +(1/2) =(t−(1/2))^2  +(1/4) !

$${sir}\:{Tanmay}\:{you}\:{have}\:{commited}\:{a}\:{error}\:{of} \\ $$$${calculus}\:{because}\:{t}^{\mathrm{2}} \:−{t}\:+\frac{\mathrm{1}}{\mathrm{2}}\:=\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\:! \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18

yes in place of(1/(2  )) i put 1...rectifying inred colour

$${yes}\:{in}\:{place}\:{of}\frac{\mathrm{1}}{\mathrm{2}\:\:}\:{i}\:{put}\:\mathrm{1}...{rectifying}\:{inred}\:{colour} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com