Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37071 by math khazana by abdo last updated on 08/Jun/18

find the value of ∫_0 ^(π/2)    ((xdx)/(1+cosx))

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{xdx}}{\mathrm{1}+{cosx}} \\ $$

Commented by math khazana by abdo last updated on 10/Jun/18

changement tan((x/2))=t give   I = ∫_0 ^1    ((2arctan(t))/(1+((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 )) =4 ∫_0 ^1    ((arctan(t))/(1+t^2  +1−t^2 ))dt  =2 ∫_0 ^1   arctan(t)dt and by parts  I =2 { [t arctan(t)]_0 ^1   −∫_0 ^1   (t/(1+t^2 ))dt}  =2{ (π/4)  −(1/2)[ln(1+t^2 )]_0 ^1 }  =(π/2) −ln(2)  ★ I =(π/2) −ln(2)★

$${changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give}\: \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{arctan}\left({t}\right)}{\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({t}\right){dt}\:{and}\:{by}\:{parts} \\ $$$${I}\:=\mathrm{2}\:\left\{\:\left[{t}\:{arctan}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\right\} \\ $$$$=\mathrm{2}\left\{\:\frac{\pi}{\mathrm{4}}\:\:−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \right\} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−{ln}\left(\mathrm{2}\right) \\ $$$$\bigstar\:{I}\:=\frac{\pi}{\mathrm{2}}\:−{ln}\left(\mathrm{2}\right)\bigstar \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18

∫_0 ^(Π/2) (x/(2cos^2 (x/2)))dx  (1/2)∫_0 ^(Π/2) ((xsec^2 (x/2))/)dx  let I_1 =∫xsec^2 (x/2)dx  =x∫sec^2 (x/2)dx−∫[(dx/dx)∫sec^2 (x/2)dx]dx  =x((tan(x/2))/(1/2))−∫((tan(x/2))/(1/2))dx   =x×2tan(x/2)−4ln∣sec(x/2)∣  so required ans is  (1/2){2xtan(x/2)−4ln∣sec(x/2)∣}_0 ^(Π/2)   =(1/2)[{2×(Π/2)×1−4ln((√2) )}−{2×0×0−4ln1}]  =(Π/2)−2×(1/2)ln2  =(Π/2)−ln2

$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{x}}{\mathrm{2}{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{xsec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{}{dx} \\ $$$${let}\:{I}_{\mathrm{1}} =\int{xsec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx} \\ $$$$={x}\int{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}−\int\left[\frac{{dx}}{{dx}}\int{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}\right]{dx} \\ $$$$={x}\frac{{tan}\frac{{x}}{\mathrm{2}}}{\frac{\mathrm{1}}{\mathrm{2}}}−\int\frac{{tan}\frac{{x}}{\mathrm{2}}}{\frac{\mathrm{1}}{\mathrm{2}}}{dx}\: \\ $$$$={x}×\mathrm{2}{tan}\frac{{x}}{\mathrm{2}}−\mathrm{4}{ln}\mid{sec}\frac{{x}}{\mathrm{2}}\mid \\ $$$${so}\:{required}\:{ans}\:{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}{xtan}\frac{{x}}{\mathrm{2}}−\mathrm{4}{ln}\mid{sec}\frac{{x}}{\mathrm{2}}\mid\right\}_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\left\{\mathrm{2}×\frac{\Pi}{\mathrm{2}}×\mathrm{1}−\mathrm{4}{ln}\left(\sqrt{\mathrm{2}}\:\right)\right\}−\left\{\mathrm{2}×\mathrm{0}×\mathrm{0}−\mathrm{4}{ln}\mathrm{1}\right\}\right] \\ $$$$=\frac{\Pi}{\mathrm{2}}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2} \\ $$$$=\frac{\Pi}{\mathrm{2}}−{ln}\mathrm{2} \\ $$

Commented by math khazana by abdo last updated on 10/Jun/18

correct answer thanks sir Tanmay.

$${correct}\:{answer}\:{thanks}\:{sir}\:{Tanmay}. \\ $$

Answered by MJS last updated on 10/Jun/18

∫(x/(1+cos x))dx=        [((∫u′v=uv−∫uv′)),((u′=(1/(1+cos x)) ⇒ u=((sin x)/(1+cos x)))),((      [((u=∫(dx/(1+cos x))=∫((tan (x/2))/(sin x))dx=)),((     [t=(x/2) → dx=2dt])),((=2∫((tan t)/(sin 2t))dt=∫((tan t)/(sin t cos t))dt=∫sec^2  t dt=)),((=tan t=tan (x/2)=((sin x)/(1+cos x)))) ])),((v=x ⇒ v′=1)) ]  =((xsin x)/(1+cos x))−∫((sin x)/(1+cos x))dx=       [t=1+cos x → dx=−(dt/(sin x))]  =((xsin x)/(1+cos x))+∫(dt/t)=((xsin x)/(1+cos x))+ln t=  =((xsin x)/(1+cos x))+ln(1+cos x)+C

$$\int\frac{{x}}{\mathrm{1}+\mathrm{cos}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\begin{bmatrix}{\int{u}'{v}={uv}−\int{uv}'}\\{{u}'=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:{x}}\:\Rightarrow\:{u}=\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}}\\{\:\:\:\:\:\begin{bmatrix}{{u}=\int\frac{{dx}}{\mathrm{1}+\mathrm{cos}\:{x}}=\int\frac{\mathrm{tan}\:\frac{{x}}{\mathrm{2}}}{\mathrm{sin}\:{x}}{dx}=}\\{\:\:\:\:\:\left[{t}=\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\mathrm{2}{dt}\right]}\\{=\mathrm{2}\int\frac{\mathrm{tan}\:{t}}{\mathrm{sin}\:\mathrm{2}{t}}{dt}=\int\frac{\mathrm{tan}\:{t}}{\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}}{dt}=\int\mathrm{sec}^{\mathrm{2}} \:{t}\:{dt}=}\\{=\mathrm{tan}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}=\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}}\end{bmatrix}}\\{{v}={x}\:\Rightarrow\:{v}'=\mathrm{1}}\end{bmatrix} \\ $$$$=\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}−\int\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{1}+\mathrm{cos}\:{x}\:\rightarrow\:{dx}=−\frac{{dt}}{\mathrm{sin}\:{x}}\right] \\ $$$$=\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}+\int\frac{{dt}}{{t}}=\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}+\mathrm{ln}\:{t}= \\ $$$$=\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}+\mathrm{ln}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)+{C} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com