Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 37089 by behi83417@gmail.com last updated on 08/Jun/18

Commented by math khazana by abdo last updated on 09/Jun/18

1) f id defined on [0,+∞[  f^′ (x)= (((1/(2(√(1+x))))(1+(√x)) −(√(1+x))(1/(2(√x))))/((1+(√x))^2 ))  =  ((2(√x)(1+(√x))−2(1+x))/((1+(√x))^2 )) = ((2(√x) +2x −2−2x)/((1+(√x))^2 ))   =((2((√x)−2))/((1+(√x))^2 ))  if x≥4  f^′ ≥0  and f is increazing  f([4,+∞[)=[f(4),f(+∞)[ =[((√5)/3) ,1[  if  0≤x≤4  f is decreasing so  f ([0,4])=[f(4),f(0)] =[((√5)/3),1]

1)fiddefinedon[0,+[f(x)=121+x(1+x)1+x12x(1+x)2=2x(1+x)2(1+x)(1+x)2=2x+2x22x(1+x)2=2(x2)(1+x)2ifx4f0andfisincreazingf([4,+[)=[f(4),f(+)[=[53,1[if0x4fisdecreasingsof([0,4])=[f(4),f(0)]=[53,1]

Commented by math khazana by abdo last updated on 09/Jun/18

2) let f(x)=y ⇒ x=f^(−1) (y) ⇒ (√(1+x))  =y(1+(√x))  ⇒ 1+x=y^2 (1+2(√x) +x) ⇒  1+x =y^2  +2y^2 (√x)  +y^2 x ⇒  1+x −y^2  −y^2 x  = 2y^2 (√x)  ⇒  (1+x −y^2  −y^2 x)^2  =4y^4 x ⇒  (1+x −(1+x)y^2 )^2  =4 y^4 x ⇒  (1+x)^2 (1−y^2 )^2  =4y^4 x ⇒  (x^2  +2x +1)(1−y^2 )^2  −4y^4 x =0 ⇒  (1−y^2 )^2 x^2  +2(1−y^2 )^2 x  +(1−y^2 )^2  −4y^4 x =0 ⇒  {1−y^2 }^2  x^2   +{ 2 −4y^2  +2y^4  −4y^4 }x  +(1−y^2 )^2 =0  {1−y^2 }^2  x^2   +2{ 1 −2y^2  −y^4 }x +(1−y^2 )^2 =0 ⇒  (1−y^2 )^2 x^2  −2(y^4  +2y^2 −1)Δx  +(1−y^2 )^2  =0  Δ^′ =(y^4  +2y^2 −1)^2  −(1−y^2 )^4 ....be continued...

2)letf(x)=yx=f1(y)1+x=y(1+x)1+x=y2(1+2x+x)1+x=y2+2y2x+y2x1+xy2y2x=2y2x(1+xy2y2x)2=4y4x(1+x(1+x)y2)2=4y4x(1+x)2(1y2)2=4y4x(x2+2x+1)(1y2)24y4x=0(1y2)2x2+2(1y2)2x+(1y2)24y4x=0{1y2}2x2+{24y2+2y44y4}x+(1y2)2=0{1y2}2x2+2{12y2y4}x+(1y2)2=0(1y2)2x22(y4+2y21)Δx+(1y2)2=0Δ=(y4+2y21)2(1y2)4....becontinued...

Commented by math khazana by abdo last updated on 09/Jun/18

3) let I  = ∫_0 ^1    ((√(1+x))/(1+(√x))) dx changement (√x)=t give  I = ∫_0 ^1   ((√(1+t^2 ))/(1+t)) 2t dt  =2 ∫_0 ^1   (t/(1+t))(√(1+t^2 ))  dt =2{ ∫_0 ^1  (√(1+t^2 )) dt −∫_0 ^1  ((√(1+t^2 ))/(1+t))dt }  ∫_0 ^1   (√(1+t^2 )) dt =_(t=sh(u))   ∫_o ^(ln(1+(√2)))  ch(u)ch(u)du  =(1/2) ∫_0 ^(ln(1+(√2)))  (1+ch(2u))du  =(1/2)ln(1+(√2))  +(1/4) [sh(2u)]_0 ^(ln(1+(√2)))  but  sh(2u) =((e^(2u)  +e^(−2u) )/2) ⇒ sh(2ln(1+(√2))  = (((1+(√2))^2   +(1+(√2))^(−2) )/2) ⇒  ∫_0 ^1  (√(1+t^2 ))dt = (1/2)ln(1+(√2)) +(1/8){ (1+(√2))^2  +(1+(√2))^(−2) }  letfind ∫_0 ^1    ((√(1+t^2 ))/(1+t)) dt  chang. t=sh(x) give  ∫_0 ^1   ((√(1+t^2 ))/(1+t)) dt= ∫_0 ^(ln(1+(√2)))   ((ch(x))/(1+sh(x))) ch(x)dx  = ∫_0 ^(ln(1+(√2)))    (1/(1+sh(x))) ((1+ch(2x))/2) dx  =(1/2) ∫_0 ^(ln(1+(√2)))    ((1 +((e^(2x)  +e^(−2x) )/2))/(1+ ((e^x  +e^(−x) )/2))) dx  =(1/2) ∫_0 ^(ln(1+(√2)))   ((2 +e^(2x)  +e^(−2x) )/(2+e^x  +e^(−x) )) dx  =_(e^x  =t)    (1/2) ∫_1 ^(1+(√2))      ((2  +t^(2 )  +(1/t^2 ))/(2 +t +(1/t))) dt  =(1/2) ∫_1 ^(1+(√2))    ((2t^2  +t^4  +1)/(2t +t^2  +1)) (1/t) dt  =(1/2) ∫_1 ^(1 +(√2))   ((t^4  +2t^2  +1)/(t^3  +2t^2  +t)) dt  =(1/2) ∫_1 ^(1 +(√2))    ((t(t^3  +2t^2  +t) −2t^3  +t^2   +2t^2  +1)/(t^3  +2t^2  +t)) dt  =(1/2) ∫_1 ^(1+(√2))    t dt +(1/2) ∫_1 ^(1+(√2))   ((−2t^3  +3t^2  +1)/(t^3  +2t^2  +t))dt  =(1/4){ (1+(√2))^2 −1} +(1/2) ∫_1 ^(1+(√2)) ((−2(t^3  +2t^2  +t)+4t^2  +2t +3t^(2 )  +1)/(t^3  +2t^2  +t))  =(1/4){2−2(√2))  −1((√2)) +(1/2)∫_1 ^(1+(√2))    ((7t^2  +2t +1)/(t(t^2  +2t +1)))dt  let decompose F(t) = ((7t^2  +2t +1)/(t(t+1)^2 ))  F(t) = (a/t) +(b/(t+1)) +(c/((t+1)^2 ))  ....be continued...

3)letI=011+x1+xdxchangementx=tgiveI=011+t21+t2tdt=201t1+t1+t2dt=2{011+t2dt011+t21+tdt}011+t2dt=t=sh(u)oln(1+2)ch(u)ch(u)du=120ln(1+2)(1+ch(2u))du=12ln(1+2)+14[sh(2u)]0ln(1+2)butsh(2u)=e2u+e2u2sh(2ln(1+2)=(1+2)2+(1+2)22011+t2dt=12ln(1+2)+18{(1+2)2+(1+2)2}letfind011+t21+tdtchang.t=sh(x)give011+t21+tdt=0ln(1+2)ch(x)1+sh(x)ch(x)dx=0ln(1+2)11+sh(x)1+ch(2x)2dx=120ln(1+2)1+e2x+e2x21+ex+ex2dx=120ln(1+2)2+e2x+e2x2+ex+exdx=ex=t1211+22+t2+1t22+t+1tdt=1211+22t2+t4+12t+t2+11tdt=1211+2t4+2t2+1t3+2t2+tdt=1211+2t(t3+2t2+t)2t3+t2+2t2+1t3+2t2+tdt=1211+2tdt+1211+22t3+3t2+1t3+2t2+tdt=14{(1+2)21}+1211+22(t3+2t2+t)+4t2+2t+3t2+1t3+2t2+t=14{222)1(2)+1211+27t2+2t+1t(t2+2t+1)dtletdecomposeF(t)=7t2+2t+1t(t+1)2F(t)=at+bt+1+c(t+1)2....becontinued...

Commented by behi83417@gmail.com last updated on 09/Jun/18

Commented by prakash jain last updated on 09/Jun/18

x=4  f(x)=((√5)/3)  x=(1/4)⇒f(x)=((√5)/4)  f^(−1) (x) for f(x)=((√(1+x))/(1+(√x)))   is not defined for since f(x) is not  one to one.

x=4f(x)=53x=14f(x)=54f1(x)forf(x)=1+x1+xisnotdefinedforsincef(x)isnotonetoone.

Commented by behi83417@gmail.com last updated on 09/Jun/18

2)2y^2 −1≥0⇒y≥((√2)/2),y≠±1,D_f =[0,+∞)  f(0)=lim_(x→+∞) f(x)=1  ⇒((√2)/2)≤y<1⇒R_f =[((√2)/2),1) .

2)2y210y22,y±1,Df=[0,+)f(0)=limx+f(x)=122y<1Rf=[22,1).

Commented by prakash jain last updated on 09/Jun/18

f(x)=((√5)/3) what is f^(−1) (x)?  f((1/4)) and f(4) both give  f(x)=((√5)/3) so f^(−1) (x) is multivalued  and hence f^(−1) (x) not a function by definition.

f(x)=53whatisf1(x)?f(14)andf(4)bothgivef(x)=53sof1(x)ismultivaluedandhencef1(x)notafunctionbydefinition.

Commented by math khazana by abdo last updated on 09/Jun/18

hello sir prakash  why are you  absent from this  platform...

hellosirprakashwhyareyouabsentfromthisplatform...

Commented by prakash jain last updated on 10/Jun/18

I am not completely absent. I read  messages daily.    My office work load is high and I  am not getting time to work   problems.

Iamnotcompletelyabsent.Ireadmessagesdaily.MyofficeworkloadishighandIamnotgettingtimetoworkproblems.

Commented by math khazana by abdo last updated on 10/Jun/18

nevermind sir ..

nevermindsir..

Answered by ajfour last updated on 09/Jun/18

x^2 (1+(√y))^2 =1+y  x^2 (1+y+2(√y))=1+y  (x^2 −1)^2 (1+y)^2 =4x^4 y  let y=cos 2θ =  ⇒  4(x^2 −1)^2 cos^4 θ=4x^4 (2cos^2 θ−1)  ⇒ (x^2 −1)^2 cos^4 θ−8x^4 cos^2 θ+4x^4 =0  cos^2 θ =((8x^4 ±(√(64x^8 −16x^4 (x^2 −1)^2 )))/(2(x^2 −1)^2 ))  cos^2 θ =((8x^4 ±(√(48x^8 +32x^6 −16x^4 )))/(2(x^2 −1)^2 ))  cos^2 θ =((8x^4 ±4x^2 (√(3x^4 +2x^2 −1)))/(2(x^2 −1)^2 ))               =((4x^4 ±2x^2 (√((3x^2 −1)(x^2 +1))))/((x^2 −1)^2 ))  4x^4 −(3x^4 +2x^2 −1) =x^4 −2x^2 +1            =(x^2 −1)^2   ⇒ cos^2 θ=((4x^4 ±2x^2 (√(4x^4 −(x^2 −1)^2 )))/((x^2 −1)^2 ))  y=cos 2θ=2cos^2 θ−1  y =((8x^4 −(x^2 −1)^2 ±4x^2 (√(4x^4 −(x^2 −1)^2 )))/((x^2 −1)^2 )) .

x2(1+y)2=1+yx2(1+y+2y)=1+y(x21)2(1+y)2=4x4ylety=cos2θ=4(x21)2cos4θ=4x4(2cos2θ1)(x21)2cos4θ8x4cos2θ+4x4=0cos2θ=8x4±64x816x4(x21)22(x21)2cos2θ=8x4±48x8+32x616x42(x21)2cos2θ=8x4±4x23x4+2x212(x21)2=4x4±2x2(3x21)(x2+1)(x21)24x4(3x4+2x21)=x42x2+1=(x21)2cos2θ=4x4±2x24x4(x21)2(x21)2y=cos2θ=2cos2θ1y=8x4(x21)2±4x24x4(x21)2(x21)2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com