All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 37166 by nishant last updated on 09/Jun/18
if3x2+2αxy+2y2+2ax−4y+1canberesolvedintotwolinearfactors,provethat′α′isarootoftheequationx2+4ax+2a2+6=0
Commented by prakash jain last updated on 10/Jun/18
ax2+2hxy+by2+2gx+2fy+c=0a=3h=αb=2g=af=−2c=1Δ=|ahghbfgfc||3αaα2−2a−21|=−(α2+4aα+2a2+6)(α2+4aα+2a2+6)=0impliesαisrootofaboveequation.Thisisnecessarybutnotsufficientcondition.forthequadratictorepresentapairastraightlinesyouneedab−h2=6−α2<0OtherCasesΔ=0,ab−h2<0⇒2linesΔ=0,ab−h2>0⇒onepointΔ=0,ab−h2=0⇒oneline
Youcanusethefollowingsentencetomemorizethedeterminant.allhostelguyshavebestfriendsgoforcinema
Terms of Service
Privacy Policy
Contact: info@tinkutara.com