Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 37218 by Rio Mike last updated on 10/Jun/18

 Proove that  a)  ((1−cosA + cos B − cos(A+B))/(1+cos A − cosB−cos(A+B)))= tan(A/2).cot (B/2)  b) cosα cos(60−α)cos(60+α)= (1/4)cos3α

Proovethata)1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)=tanA2.cotB2b)cosαcos(60α)cos(60+α)=14cos3α

Answered by $@ty@m last updated on 11/Jun/18

(a)  L.H.S.  =((1−cosA + cos B − cos(A+B))/(1+cos A − cosB−cos(A+B)))  =((1−2sin  ((A+B)/2)sin  ((B−A)/2)−1+2sin^2 ((A+B)/2))/(1+2sin  ((A+B)/2)sin  ((B−A)/2)−1+2sin^2 ((A+B)/2)))  =((sin ((A−B)/2)+sin ((A+B)/2))/(sin ((B−A)/2)+sin ((A+B)/2)))  =((2sin (A/2)cos (B/2))/(2sin (B/2)cos (A/2)))  =tan (A/2)cot (B/2)  =R.H.S.  (b)  L.H.S.  = cosα cos(60−α)cos(60+α)  =(1/2).cosα.2cos(60−α)cos(60+α)  =(1/2).cosα.(cos 120+cos 2α)  =(1/2).cosα.(−(1/2)+2cos^2 α−1)  =(1/2).cosα.(2cos^2 α−(3/2))  =(1/4).(4cos^3 α−3cos α)  =(1/4)cos 3α  =R.H.S.

(a)L.H.S.=1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)=12sinA+B2sinBA21+2sin2A+B21+2sinA+B2sinBA21+2sin2A+B2=sinAB2+sinA+B2sinBA2+sinA+B2=2sinA2cosB22sinB2cosA2=tanA2cotB2=R.H.S.(b)L.H.S.=cosαcos(60α)cos(60+α)=12.cosα.2cos(60α)cos(60+α)=12.cosα.(cos120+cos2α)=12.cosα.(12+2cos2α1)=12.cosα.(2cos2α32)=14.(4cos3α3cosα)=14cos3α=R.H.S.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com